Camera Control Commands This document describes the command structure of the new pco.camera series. Page 1 of 151 File: Version: as of: Author: 02. Nov 2010 FRE/ LWA/ EO/ GHO/MBL Copyright © 2002 pco Computer Optics GmbH (called pco in the following text), Kelheim, Germany. All rights reserved. **pco** assumes no responsibility for errors or omissions in these materials. These materials are provided "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. **pco** further does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained within these materials. **pco** shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials. The information is subject to change without notice and does not represent a commitment on the part of **pco** in the future. **pco** hereby authorizes you to copy documents for non-commercial use within your organization only. In consideration of this authorization, you agree that any copy of these documents which you make shall retain all copyright and other proprietary notices contained herein. Each individual document published by **pco** may contain other proprietary notices and copyright information relating to that individual document. Nothing contained herein shall be construed as conferring by implication or otherwise any license or right under any patent or trademark of **pco** or any third party. Except as expressly provided above nothing contained herein shall be construed as conferring any license or right under any pco copyright. Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by **pco**, and may not be licensed hereunder. File: Page 2 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL 02. Nov 2010 # **Table of Content:** | A. Cor | mmand | 1 Structure | 7 | |--------|--------|---|----| | 1 G | eneral | | 7 | | 1.1 | Co | nventions | 7 | | 1.2 | Ha | rdware elements, interface connectors | 8 | | 2 O | vervie | w of commands | 9 | | 2.1 | Ca | mera | 9 | | 2.2 | Ima | age Sensor | 10 | | 2.3 | Tir | ning | 10 | | 2.4 | Sto | orage | 11 | | 2.5 | Re | cording | 12 | | 2.6 | Ima | age Read | 13 | | B. Imp | olemen | tation Details | 14 | | 3 C | Commu | nication Layers | 14 | | 4 C | Commu | nication Basics | 15 | | 4.1 | Ge | neral message format | 16 | | 4. | .1.1 | Message Format | 16 | | 4.2 | Me | essage Acknowledgement | 17 | | 4. | .2.1 | Regular Response Message | 17 | | 4. | .2.2 | Failure / Warning Response Message | 17 | | 4. | .2.3 | Synchronization messages | 18 | | 4.3 | Gro | oup codes | 18 | | 5 C | Comma | nd Sections | 19 | | 5.1 | Ge | neral Control / Status | 19 | | 5. | .1.1 | Get Camera Type | 20 | | 5. | .1.2 | Get Camera Health Status | 21 | | 5. | .1.3 | Reset Settings to Default | 23 | | 5. | .1.4 | Get Temperature | 24 | | 5. | .1.5 | Get Hardware Versions | 24 | | 5. | .1.6 | Get Firmware Versions | 25 | | 5. | .1.7 | Get Fan Control Status | 26 | | 5. | .1.8 | Set Fan Control Params | 27 | | 5. | .1.9 | Get Number of HW IO Signals (dimax only) | 28 | | 5. | .1.10 | Get HW IO Signal Description (dimax only) | 29 | | 5. | .1.11 | Get HW IO Signal (dimax only) | 31 | | 5. | .1.12 | Set HW IO Signal (dimax only) | 32 | | 5.2 | Ima | age Sensor | 33 | | 5. | .2.1 | Get Camera Description | 34 | | 5. | .2.2 | Get Sensor Format | 39 | | 5. | .2.3 | Set Sensor Format | 40 | | 5. | .2.4 | Get ROI | 41 | | 5. | .2.5 | Set ROI | 42 | | 5. | .2.6 | Get Binning | 43 | | 5. | .2.7 | Set Binning | 44 | # (Table of Content ... continued) | 5.2.8 | Get Pixelrate | 45 | |---------|-----------------------------------|----| | 5.2.9 | Set Pixelrate | 46 | | 5.2.10 | Get Conversion Factor | 47 | | 5.2.11 | Set Conversion Factor | 48 | | 5.2.12 | Get Double Image Mode | 49 | | 5.2.13 | Set Double Image Mode | 50 | | 5.2.14 | Get CDI Mode (dimax only) | 51 | | 5.2.15 | Set CDI Mode (dimax only) | 52 | | 5.2.16 | Get ADC Operation | 54 | | 5.2.17 | Set ADC Operation | 55 | | 5.2.18 | Get IR Sensitivity | 56 | | 5.2.19 | Set IR Sensitivity | 57 | | 5.2.20 | Get Cooling Setpoint Temperature | 58 | | 5.2.21 | Set Cooling Setpoint Temperature | 59 | | 5.2.22 | Get Offset Mode | 60 | | 5.2.23 | Set Offset Mode | 61 | | 5.2.24 | Get Noise Filter Mode | 62 | | 5.2.25 | Set Noise Filter Mode | 63 | | 5.2.26 | Get Hot Pixel Correction Mode | 64 | | 5.2.27 | Set Hot Pixel Correction Mode | 65 | | 5.2.28 | Get DSNU Adjust Mode (dimax only) | 66 | | 5.2.29 | Set DSNU Adjust Mode (dimax only) | 67 | | 5.2.30 | Init DSNU Adjustment (dimax only) | 68 | | 5.2.31 | Get Color Correction Matrix | 69 | | 5.3 Tin | ning | 70 | | 5.3.1 | Get Timebase | 71 | | 5.3.2 | Set Timebase | 72 | | 5.3.3 | Get Delay / Exposure Time | 73 | | 5.3.4 | Set Delay / Exposure Time | 74 | | 5.3.5 | Get Delay / Exposure Time Table | 75 | | 5.3.6 | Set Delay / Exposure Time Table | 76 | | 5.3.7 | Get FPS Exposure Mode | 77 | | 5.3.8 | Set FPS Exposure Mode | 79 | | 5.3.9 | Get Framerate | 80 | | 5.3.10 | Set Framerate | 81 | | 5.3.11 | Get Trigger Mode | 83 | | 5.3.12 | Set Trigger Mode | 84 | | 5.3.13 | Force Trigger | 85 | | 5.3.14 | Get Camera Sync Mode (dimax only) | 86 | | 5.3.15 | Set Camera Sync Mode (dimax only) | 87 | | 5.3.16 | Get Fast Timing Mode | 88 | | 5.3.17 | Set Fast Timing Mode | 89 | | 5.3.18 | Get Camera Busy status | 90 | | 5.3.19 | Get Power Down Mode | 91 | | 5.3.20 | Set Power Down Mode | 92 | | 5.3.21 | Get User Power Down Time | 93 | | | | | # (Table of Content ... continued) | 5.3.22 | Set User Power Down Time | 94 | |--------------|---|-----| | 5.3.23 | Get <exp trig=""> Signal Status</exp> | 95 | | 5.3.24 | Get COC Runtime | 96 | | | orage | 97 | | 5.4.1 | Get Camera RAM size | 98 | | 5.4.2 | Get Camera RAM Segment Size | 99 | | 5.4.3 | Set Camera RAM Segment Size | 100 | | 5.4.4 | Clear RAM Segment | 101 | | 5.4.5 | Get Active RAM Segment | 102 | | 5.4.6 | Set Active RAM Segment | 103 | | | cording | 104 | | 5.5.1 | Get Storage Mode (Recorder / FIFO buffer) | 105 | | 5.5.2 | Set Storage Mode (Recorder / FIFO buffer) | 106 | | 5.5.3 | Get Recorder Submode (Sequence / Ring buffer) | 107 | | 5.5.4 | Set Recorder Submode (Sequence / Ring buffer) | 108 | | 5.5.5 | Get Recording Status | 109 | | 5.5.6 | Set Recording State | 110 | | 5.5.7 | Arm Camera | 112 | | 5.5.8 | Get Acquire mode (Auto / External) | 113 | | 5.5.9 | Set Acquire mode (Auto / External) | 114 | | 5.5.10 | Get <acq enbl=""> Signal Status</acq> | 115 | | 5.5.11 | Set Date / Time | 116 | | 5.5.12 | Get Timestamp Mode | 117 | | 5.5.13 | Set Timestamp Mode | 118 | | 5.5.14 | Get Record Stop Event | 120 | | 5.5.15 | Set Record Stop Event | 121 | | 5.5.16 | Stop Record | 123 | | | age Read | 124 | | 5.6.1 | Get Segment Image Settings | 125 | | 5.6.2 | Get Number Of Images in Segment | 126 | | 5.6.3 | Read Images from Segment (Recorder Mode only) | 127 | | 5.6.4 | Request Image | 128 | | 5.6.5 | Repeat Image | 129 | | 5.6.6 | Cancel Image Transfer | 130 | | 5.6.7 | Get Bit Alignment | 131 | | 5.6.8 | Set Bit Alignment | 132 | | 5.6.9 | Play Images from Segment | 133 | | 5.6.10 | Get Play Position | 136 | | 5.6.11 | Set Interface Output Format | 137 | | 6 Error / V | Warning Codes | 138 | | C. Appendice | es: Interface dependent Details | 139 | | | nd Implementation per IEEE 1394 Interface | 139 | | | neral | 139 | | 7.2 Co | mmunication between Camera and Master | 139 | | 7.2.1 | Commands sent by the master controller | 140 | | 7.2.2 | Command responses sent by the camera | 140 | | | | | # (Table of Content ... continued) | 7.2.3 | Image data sent by the camera | 140 | |--------|--|-----| | 7.2.4 | Synchronisation commands sent by the camera | 141 | | 7.3 II | EEE1394 specific commands | 141 | | 7.3.1 | Set IEEE 1394 Interface Params | 141 | | 7.3.2 | Get IEEE 1394 Interface Params | 143 | | 8 Comm | nand Implementation per CameraLink Interface | 144 | | 8.1 G | General | 144 | | 8.2 C | Communication between Camera and Master | 144 | | 8.2.1 | Commands sent by the controller | 144 | | 8.2.2 | Command responses sent by the camera | 145 | | 8.2.3 | Image data sent by the camera | 145 | | 8.2.4 | Control lines set by the controller | 145 | | 8.3 C | CameraLink specific commands | 146 | | 8.3.1 | Set CL Configuration | 146 | | 8.3.2 | Get CL Configuration | 147 | | 8.3.3 | Set CL Baudrate | 149 | | 8.3.4 | Get CL Baudrate | 150 | FRE/ LWA/ EO/ GHO/MBL # A. Command Structure Within this document the commands for controlling the pco.camera at the SDK/API level are described. Where it seems to be necessary also further explanations are made for the commands or settings or modes that can be configured. #### General 1 - Conventions in this manual - Hardware elements and interface connectors #### 1.1 Conventions The following typographic conventions are used in this manual: bold: get camera type Functions, procedures or modes, that can be used [words in brackets]: [run] Possible values or "states" of the described functions ALL CAPITAL WORDS: **TRUE** Logical or boolean values like TRUE, FALSE, ON, OFF, 0, 1, RISING, FALLING, HIGH, LOW <words in arrows>: <acq enbl> Names of hardware input / output signals FRE/ LWA/ EO/ GHO/MBL # 1.2 Hardware elements, interface connectors figure 1: View of back panel of **pco.**power #### legend: - [a] <control in> general input for external control signals, BNC plugs - [b] <exp trig> external exposure trigger input - [c] <acq enbl> external acquire enable input - [d] <status out> general status output signals, BNC plugs - [e] <exp> exposure output signal - [f] <busy> busy
output signal - [g] DIP switch, which sets polarity, HIGH and LOW levels and level of voltages - [h] [TTL] or [>10V] selects voltage level either TTL = 5V or larger than 10V - ii der trigger edge selection for <exp trig> input, either rising or falling edge - [j] \(\subseteq \) or \(\subseteq \) trigger level selection for <acq enbl> input, HIGH or LOW active - [k] [TTL] or [>10V] selects voltage level either TTL = 5V or larger than 10V Page 8 of 151 File: Version: as of: Author: # **Overview of commands** The total set of control commands is subdivided into six sections: - Camera - **Image Sensor** - Timing - Storage - Recording - Image Read #### 2.1 Camera This section contains general instructions to control the camera and request information about the camera: - Request camera type, hardware/firmware version, serial number, interface type - Request camera status (warnings, errors etc.) - Reset all settings to default values - Get camera / power supply temperature # 2.2 Image Sensor This group contains all instructions to control the image sensor and to request information about the sensor. These are: - Get Camera description: sensor type, standard resolution, extended resolution, dynamic resolution (bit), delay- exposure times... - Set/request sensor format: [standard] / [extended]. - Set/request ROI settings. - Set/request binning settings. - Set/request pixel rate (frequency for shifting the pixels out of the sensor shift registers). - Set/request conversion factor (gain) settings. - Set/request double image mode (expose two images one after another immediately). - Set/request ADC mode (use one or two ADCs for digitizing the pixel data of the sensor). - Set/request IR sensitivity setting (ON/OFF). - Set/request cooling setpoint temperature. - Set/request offset Mode. - Set/request hot pixel correctionmode - Get CCM Matrix # 2.3 Timing This group contains all available commands for control of the timing of the imaging process: - Set / request delay and exposure time (timebase, timetable) for taking images. - Set / request trigger mode for exposures: [auto trigger], [force trigger], [extern edge triggered], [extern exposure pulse trigger]⁽¹⁾. Controls the usage of the <exp trig> control input. See the below for a detailed description of the trigger modes. - Force trigger: this software command starts an exposure if the trigger mode is in the state [auto trigger], [force trigger] or [extern edge triggered]. If in [extern exposure pulse trigger] mode nothing happens - Request busy status: A trigger is ignored, if the camera is still busy (exposure or readout). In case of [force trigger] command the user may request the camera busy status in order to be able to generate a valid [force trigger] command - Set / request power down time (threshold value, which becomes available in case of exposure times longer than 1s) - Read control input (<exp trig>): read TRUE or FALSE level of external control input (2) (<control in>). **Notes:** - (1) Edge type (FALLING edge / RISING edge) as well as the electrical sensitivity (trigger level) is selected by DIP switches at the power supply unit near the trigger input(<control in>). In double image mode: the first exposure time is affected by the trigger commands. The duration of the second exposure is always given by the readout time of the first image. - (2) If the DIP switch shows RISING edge then HIGH level signal is TRUE and LOW level signal is FALSE. If the DIP switch shows FALLING edge then HIGH level signal is FALSE and LOW level signal is TRUE. The following table shows how the different trigger modes work: | Trigger mode | Description of operation | |------------------------------------|---| | auto trigger | An exposure of a new image is started automatically best possible compared to the readout of an image. If using a CCD and if images are taken in a sequence, then exposures and readout of the sensor are started simultaneously. | | software trigger | An exposure can only be started by a force trigger command. | | extern exposure & software trigger | A delay / exposure sequence is started at the RISING or FALLING edge ⁽¹⁾ of the trigger input (<control in="">)or by a [force trigger] command.</control> | | extern exposure control | the exposure time is defined by pulse length at the trigger input (<control in="">). The delay and exposure time values defined by the set / request delay and exposure command are ineffective.</control> | # 2.4 Storage This set contains all commands needed for controlling the memory and the storage process. The total camera memory is divided into 4 segments (similar to partitions on hard discs). - Request RAM size (pages) and page size (pixels) - Request / set RAM segment size in pages - Clear RAM segment - Get / set active RAM segment #### Note: Consistency check (e.g. in order to avoid that buffers overlap) must be done by the application software! Each segment also contains information about the image settings (ROI / binning etc.) for the images stored within this segment (all images must have the same format). File: Version: as of: Author: Page 11 of 151 # 2.5 Recording - Set / request storage mode: [recorder mode] / [FIFO buffer mode] (see insert box 2.5.1 for further explanations) - Set / request recorder submode: [sequence] / [ring buffer] (see insert box 2.5.2 for further explanations) - Set / request recording state: [run] / [stop] (see insert box 2.5.3 for further explanations) - Arm: prepare camera for recording command This function is necessary before a new recording (set recording = [run]) command is released. This function takes the settings of delay, exposure, triggering, recorder mode ... compiles them and prepares the camera to start immediately when a start of recording (set **recording** = [run]) is performed. - Set / request acquire mode: [auto] / [external], controls the usage of the <acq enbl> control input - [auto]: the external control input <acq enbl> is ignored - [external]: the external control input <acq enbl> is a static enable signal of images. If this input is TRUE, then exposure triggers are accepted and images are taken. If this signal is set FALSE, then all exposure triggers are ignored and the sensor readout is stopped. - Read control input (<acq enbl>): read TRUE or FALSE level of external control input⁽¹⁾ (<control in>) - Set date / time - Set / request timestamp mode #### **Notes:** Active (TRUE) level (LOW/HIGH) as well as the electrical sensitivity is selected by DIP switches at the power supply unit near the acquire enable input(<acq enbl>). (1) If the DIP switch shows □ then HIGH level signal is TRUE and LOW level signal is FALSE. If DIP switch shows \subseteq then HIGH level signal is FALSE and LOW level signal is TRUE. Box 2.5.1 | recorder mode | FIFO buffer mode | |--|---| | images are recorded and stored within the internal camera memory (camRam) "live view" transfers the most recent image to the PC for (for viewing / monitoring) indexed or total readout of images after the recording has been stopped | all images taken are transferred to the PC in chronological order camera memory (camRAM) is used as huge FIFO buffer to bypass short bottlenecks in data transmission. If buffer overflows the oldest images are overwritten. In FIFO buffer mode images are send directly to the PC interface (Firewire, USB) like a continuous data stream. Synchronization is done with the interface. | #### Box 2.5.2 | recorder submode: sequence | recorder submode: ring buffer | |---|--| | recording is stopped when the allocated
buffer is full | camera records continuously into ring
bufferif the allocated buffer is full, the older
images are overwrittenrecording is stopped
by software command | #### Box 2.5.3 #### Recording: [run] / [stop] The recording command controls the status of the camera. If the recording state is [run], images can be released by **exposure trigger** and **acquire enable**. If the recording state is [stop] all image readout or exposure sequences are stopped and the sensors (CCDs or CMOS) are running in a special idle mode to prevent dark charge accumulation. The recording state has the highest priority compared to functions like acquire enable or exposure trigger. The recording state is started by: software command: **Set recording** = [run] The recording state is stopped by: - powering on the camera - software command: **Set recording** = [stop] - software command: Reset all settings to default values. - in recorder submode = [sequence], if the buffer overflows. # 2.6 Image Read - Request image settings for this segment (ROI, binning, horizontal x vertical resolution) - Request number of images in segment - Request / set live view: ON/OFF (**recorder mode** only) - Read image addressed /
indexed (**recorder mode** only) FRE/ LWA/ EO/ GHO/MBL # **B. Implementation Details** # 3 Communication Layers | camera status and command layer | | | | | |------------------------------------|--|--|--|--| | PC application | | | | | | PC DLL (interface to driver layer) | | | | | | PC driver layer | | | | | | hardware transmission layer | | | | | | camera communication port | | | | | | camera µP camera FPGA | | | | | The application software running on the PC is able to send commands to the camera as well as requesting status information from the camera. There is also a channel for transmitting image data. The DLL links the application software to the camera device driver layer. Commands sent to the driver should be common for all versions of cameras as well as for all types of interfaces (Firewire, USB etc.). Thus the driver converts the commands to the used hardware port. Example of Layer structure applied to the Firewire interface between PC and camera. Commands and status information are sent between the PC and the camera µP, the image data are transferred by the camera FPGA to the FireWire interface. Interfaces which will be implemented are Firewire - IEEE1394, Camera Link, USB 2.0 and Ethernet (TCP/IP). The latter one is somewhat different since within the PC the layers up to the application layer are already implemented within the operating system. The communication port, that is the path from the PC driver layer down separates the data path into channels for commands, status messages and image data. ### **Communication Basics** In normal operation the interfaces are used for establishing a point-to-point-connection. Command messages are sent asynchronous, whereas status messages are sent periodically (e.g. every 500 ms, or after an image was taken etc.). Each message, which has been sent, contains a checksum calculated over all bytes of the message (except the checksum). So if a message length is 4 byte without the checksum byte, the checksum byte is added and the complete message length is 5 byte. The receiving microcontroller (µC, in the camera or the pco.power) also calculates the checksum over the payload data and compares the result with the sent checksum. If the calculated checksum differs from the sent checksum, the command is ignored and the addressed µC responds a dummy message with [0xFFFF] (hexadecimal) as command. The messages are transferred binary in order to speed up the transfers as well as to minimize the transferred volume thus optimizing the overall system performance. Sending ASCII message would have the benefit of better readability, however the transfer time and volume are as twice as much as for the binary transmission. For maintenance and service purposes a protocol analyzer may be used which visualizes the messages on a PC and which is also able to generate command messages. Also "handshaking" is performed between communicating devices. Each message, which has been sent, will be responded by the receiving device. Basically three different cases have to be regarded: - Transmission is ok executed command was successful - Transmission of the command failed command was ignored - Transmission is ok but executed command failed The transmitter has to wait a reasonable time due to the command and the status of the camera for the response message of the receiving device, as the receiving device has to execute the command and then send back the result in the response message. The timeout limit has to be specific for the command, as some commands as programming- or erase-flash-commands may take some time. In order to allow also an ASCII protocol simultaneously to the messages, the range of message applicable bytes in the message header are limited to ASCII codes commonly not used in plain text communication. Thus the receiver algorithm may look at each byte and either let pass all "standard" ASCII code or open the appropriate message queue for the header. More details are described in this manual. Every programmable device inside the camera (µP, FPGA, CPLD) is ready for being updated. The hardware as well as the software environment are designed to meet this requirement. The update will be done using the serial interface of a PC which runs an appropriate application controlling the serial interface. In case users try to use or configure inconsistent parameters (modes not compatible etc.), the camera will reject the command. However, it is ensured, that a user can still change the configuration of the camera with successive commands. There are several pathways to achieve this purpose, for example, some basic settings can have a higher priority than other settings derived from the former. Changing a higher priority setting is always possible, in this case lower prioritized settings, which are not consistent, are set to appropriate default values. Changing lower prioritized settings to inconsistent values will be rejected. Another possibility is to check the consistency with an **Arm camera** command. In all cases the application software has to ensure and check that all settings are consistent. # 4.1 General message format #### 4.1.1 Message Format There is defined a general message format which facilitates the message handling for transmitter and receiver: | Com | mand | Message | e Length | Payload Data | | | | | Chksum | |------------|-----------------|----------|-----------|--|--|--|--|-------------------------|--------| | 0x01 | 0x01 | 0x0A | 0x00 | 0x00 | | | | | 0x0A | | Group Code | Message
Code | Low Byte | High Byte | Length of Payload data depends on the message. The data may be divided into blocks of different meaning again. | | | | Sum of all bytes before | | #### **Detailed description of the message:** - The group code defines the group to which the command belongs. - The message code defines the command or message itself. - The message length is the length of the complete message in bytes, including the checksum byte. Please note, that it is delivered in low byte high byte order. Since the data bytes must not exceed 256 bytes, the maximum length is 261 bytes. - The payload data is data e.g. needed for executing the command, e.g. parameter for settings, data byte for programming and update commands. However there may be messages with no data at all. The length of the data is simply calculated based on the message length minus 5. The maximum number of data byte is 256. - The checksum is the sum over all preceding bytes of the message. A corresponding C language structure representing a general command looks like this: **Note:** The checksum is not regarded within the structure since its position is not constant for the complete set of messages. Please note also that low byte is sent before the high byte! Because both transmitter and receiver know all commands, the receiver has to decide on the first two bytes which command is sent and then will fill the appropriate structure of the command. ## 4.2 Message Acknowledgement Basically there three possible cases for message handshaking or acknowledgement: - Transmission is ok, executed command was successful. - Transmission of the command failed, command was ignored. - Transmission is ok, but executed command failed. The response messages for these three cases sent are described below. ## 4.2.1 Regular Response Message Each command has to be answered by the receiver. As sign of acknowledgement the responded message's group code is changed by adding 0x80 through a logical OR operation (setting bit 15 of the command word). | Comi | mand | Message | e Length | Data Returned (Status, command success etc.) | | | | | Chksum | |----------------------|-----------------|----------|-----------|--|------|--|--|--|-------------------------| | 0x81 | 0x01 | 0x0A | 0x00 | 0x00 | 0x00 | | | | | | Group Code
+ 0x80 | Message
Code | Low Byte | High Byte | Data returned has not to be the data sent, also the length of the response message may differ from the received message! | | | | | Sum of all bytes before | #### **Note:** The response message may not have the same length as the original message! ## 4.2.2 Failure / Warning Response Message #### a.) Transmission Failure However if the transmission of the message fails or the checksum is wrong then there is no responded message. The sender has to synchronize itself via timeouts! Please note, that no message is sent only in case of transmission errors, i.e. the receiver gets a message with erroneous checksum or an undefined message code. If the command executed fails, this has to be handled via messages described below. #### b.) Command Execution Failed If the transmission is ok, but the command execution fails, the receiving device will indicate the failure with the following kind of message: | Comi | mand | Message Length | | Data Returned | | | Chksum | | |----------------------|-----------------|----------------|-----------|-------------------------|---------------------|--|----------------------------|------| | 0xC1 | 0x01 | 0x09 | 0x00 | 0xFF | 0xFF 0xFF 0xFF 0xFF | | | 0xFF | | Group Code
+ 0xC0 | Message
Code | Low Byte | High Byte | E.g. return status etc. | | | Sum of all bytes
before | | Page 17 of 151 File: Version: as of: Author: The group code is changed by a logical OR operation with 0x80 to indicate, that it's a response message. An additional change by a logical OR operation with 0x40 (thus resulting in an OR with 0xC0 =0x80 + 0x40) indicates a failure or a warning of the requested command. #### Note: The response message may not have the same length as the original message! # 4.2.3 Synchronization messages In order to initialize, to resynchronize (after failures) and to test the communication between two devices synchronization messages
are defined. | Comi | mand | Message | Chksum | | |------------|-----------------|----------|-----------|-------------------------| | 0x## | 0x## | 0x05 | 0x## | | | Group Code | Message
Code | Low Byte | High Byte | Sum of all bytes before | There is no payload data and no action is triggered by the command, except sending a response message. Thus one device is able to test, if the other device is connected and listening. If a failure occurred one device is able to send synchronization messages till the connected device is responding and the communication is reestablished again. # 4.3 Group codes In order to also allow an ASCII protocol in parallel to the messages the range of allowed message header byte is limited to ASCII codes commonly not used in plain text communication. Thus the receiver algorithm may look at each byte and either let pass all ASCII code or open the appropriate message queue for the header. As mentioned above, there also has to be a range of group codes for response and failure response messages, these are the regular group codes with bit 7 set (bit 15 of the word) for indicating response messages and bit 6 (bit 14 of the word) set for indicating a failure of the command. Page 18 of 151 File: Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL #### 5 **Command Sections** | Group codes: | | |------------------------|------| | General Control/Status | 0x10 | | Image Sensor Control | 0x11 | | Timing Control | 0x12 | | Storage Control | 0x13 | | Recording Control | 0x14 | | Image Read | 0x15 | #### 5.1 General Control / Status The group id code for General Control/Status Commands is 0x10. Thus the least significant byte of all command id codes is 0x10. The command id codes are 0x??10, the code of the response message 0x??90 or in case of a failed command 0x??D0. #### Overview: | Command: | Cmd.
Code | Resp.
Code | Error
Code | |---|--------------|---------------|---------------| | Get Camera Type | 0x0110 | 0x0190 | 0x01D0 | | Get Camera Health Status | 0x0210 | 0x0290 | 0x02D0 | | Reset Settings to Default | 0x0310 | 0x0390 | 0x03D0 | | Get Temperature | 0x0610 | 0x0690 | 0x06D0 | | Get Hardware Versions | 0x0710 | 0x0790 | 0x07D0 | | Get Firmware Versions | 0x0810 | 0x0890 | 0x08D0 | | Get Fan Control Status | 0x0B10 | 0x0B90 | 0x0BD0 | | Set Fan Control Params | 0x0C10 | 0x0C90 | 0x0CD0 | | Get Number of HW IO Signals | 0x2511 | 0x2591 | 0x25D1 | | Get HW IO Signal Description (dimax only) | 0x2611 | 0x2691 | 0x26D1 | | Get HW IO Signal (dimax only) | 0x1912 | 0x1992 | 0x19D2 | | Set HW IO Signal (dimax only) | 0x1A12 | 0x1A92 | 0x1AD2 | ## 5.1.1 Get Camera Type Request camera type, hardware/firmware version, serial number etc. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0110 | 0x0005 | 0x16 | Parameter: None #### b.) Response Message: | Code | Length | Cam. Type | Cam.Sub.
Type | Ser. No. | HW Version | FW Version | Interf.
Type | Cks. | |--------|--------|-----------|------------------|-----------|------------|------------|-----------------|------| | 0x0190 | 0x0017 | 0x#### | 0x#### | 0x####### | 0x####### | 0x######## | 0x#### | 0x## | Return values: - camera type as word, see table below - camera sub type as word - serial no. as long word. - hardware version as long word, where the most significant word is the version no. and the lower significant word is the revision no. (ver.rev e.g. 2.01 = [0x00020001]) - firmware version as long word, where the most significant word is the version no. and the lower significant word is the revision no. (ver.rev e.g. 2.01) - interface type as word, see table below | Camera Type codes: | | | | |---------------------|--------|------------------------|--------| | pco. 1200 hs | 0x0100 | pco.4000 | 0x0260 | | pco. 1300 | 0x0200 | pco.(future 1) | 0x0300 | | pco. 1600 | 0x0220 | pco. (future 2) | 0x0400 | | pco. 2000 | 0x0240 | pco.(future 3) | 0x0500 | | Interface Type codes: | | | | |-----------------------|--------|------------------|--------| | FireWire | 0x0001 | Ethernet | 0x0004 | | Camera Link | 0x0002 | Serial Interface | 0x0005 | | USB | 0x0003 | Reserved | 0x0006 | **Note:** The fact that a special interface type is mentioned here is no guaranty for availability! #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x01D0 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.2 Get Camera Health Status Request the current camera health status: warnings, errors. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0210 | 0x0005 | 0x17 | Parameter: None #### b.) Response Message: | Code | Length | Warnings | Errors | Status | Cks. | |--------|--------|------------|------------|------------|------| | 0x0290 | 0x000D | 0x######## | 0x######## | 0x######## | 0x## | - Return values: Warnings encoded as bits of a longword. Bit set indicates warning, bit cleared indicates that the corresponding parameter is ok. See table on the next page. - System errors encoded as bits of a longword. Bit set indicates error, bit cleared indicates that the corresponding status is ok. See table on the next - System Status encoded as bits of a longword. For meaning of the bits see table on the next page. The tables on the next page show the mask value (not the bit no.) for requesting the corresponding error / warning status: ``` // -- C/C++ example ----- if (errorcode & 0x00000001) // power supply voltage range error // report error to user etc. ``` #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D0 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) # d.) Warnings: | Warning mask codes: | | | |---------------------|--|--| | 0x00000001 | Power Supply Voltage Range | | | 0x00000002 | Power Supply Temperature | | | 0x00000004 | Camera temperature (board temperature / FPGA temperature) | | | 0x00000008 | Image Sensor temperature (for cooled camera versions only) | | ## e.) Errors: | Error mask codes: | | | |-------------------|--|--| | 0x00000001 | Power Supply Voltage Range | | | 0x00000002 | Power Supply Temperature | | | 0x00000004 | Camera temperature (board temperature / FPGA temperature) | | | 0x00000008 | Image Sensor temperature (for cooled camera versions only) | | | 0x00010000 | Camera Interface failure | | | 0x00020000 | Camera RAM module failure | | | 0x00040000 | Camera Main Board failure | | | 0x00080000 | Camera Head Boards failure | | # f.) Status: | Status mask coo | des: | |-----------------|---| | 0x00000001 | Default State: Bit set: Settings were changed since powerup or reset. Bit cleared: No settings changed, camera is in default state. | | 0x00000002 | Settings Valid: • Bit set: Settings are valid (i.e. last "Arm Camera' was successful and no settings were changed since 'Arm camera', except exposure time). • Bit cleared: Settings were changed but not yet not checked and accepted by 'Arm Camera' command. | | 0x00000004 | Recording State: • Bit set: Recording state is on. • Bit cleared: Recording state is off. | ### 5.1.3 Reset Settings to Default Resets all camera settings to default values. During a power-up sequence this function is executed. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0310 | 0x0005 | 0x18 | Parameter: None #### b.) Response Message: | Code | Length | Cks. | |--------|--------|------| | 0x0390 | 0x0005 | 0x98 | #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x03D0 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### d.) These are the defaults settings: | Setting: | Default: | |---------------------|--| | Sensor Format | standard | | ROI | full resolution | | Binning | no binning | | Pixel Rate | (depending on image sensor) | | Gain | Normal gain (if setting available due to sensor) | | Double Image Mode | Off | | IR sensitivity | Off (if setting available due to sensor) | | Cooler Setpoint | -12 C° | | ADC mode | Using one ADC | | Exposure Time | 20 ms | | Delay Time | 0 μs | | Trigger Mode | Auto Trigger | | Recording state | stopped | | Memory Segmentation | Total memory allocated to first segment | | Storage Mode | Recorder Ring Buffer + Live View on | | Acquire Mode | Auto | Note: If the camera is running during this command is sent, it will be stopped! ### 5.1.4 Get Temperature Request the current camera operation temperateures #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0610 | 0x0005 | 0x1B | Parameter: None #### b.) Response Message: | Code | Length | CCD temp. | Cam. temp. | PS temp. | Cks. | |--------|--------|-----------|------------|----------|------| | 0x0690 | 0x000B | 0x#### | 0x#### | 0x#### | 0x## | Return values: - CCD temperature as signed word in tenth of °C. - Camera temperature as signed word in °C. - Power Supply temperature as signed word in °C. #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x06D0 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.5 Get Hardware Versions
Request the versions of the avaiable hardware components. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0710 | 0x0005 | 0x1C | Parameter: None #### b.) Response Message: | Code | | Number of components | 10 times structure below | Cks. | |--------|--------|----------------------|--------------------------|------| | 0x0790 | 0x00E3 | 0x#### | | 0x## | | Name of component | BatchNo of component | Revision of component | Variant of component | |--|----------------------|-----------------------|----------------------| | ###################################### | 0x#### | 0x#### | 0x#### | FRE/ LWA/ EO/ GHO/MBL Return values: - Number of Components - String with name of each avaiable component - BatchNo of each avaiable component - Revision of each avaiable component - Variant of each avaiable component #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x07D0 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.6 Get Firmware Versions Request the versions of the Firmware of installed components. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0810 | 0x0005 | 0x1D | Parameter: None #### b.) Response Message: | Code | Length | Number of components | 10 times structure below | Cks. | |--------|--------|----------------------|--------------------------|------| | 0x0890 | 0x00E3 | 0x#### | | 0x## | | Name of component | Minor Rev. of component | Major Rev. of component | Variant of component | |--|-------------------------|-------------------------|----------------------| | ###################################### | 0x#### | 0x#### | 0x#### | Return values: - Number of Components - String with name of each avaiable component - Minor Revision of each available component - Major Revision of each available component - Variant of each avaiable component #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x07D0 | 0x0009 | 0x######## | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.7 Get Fan Control Status Request the current parameters and limits for the Fan Control settings. These command allows the user to control the camera fan, e.g. in order to minimize vibrations. Request this information before using the "Set Fan Control Params" command! #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0B10 | 0x0005 | 0x | Parameter: None #### b.) Response Message: | Code | Length | Fan Min | Fan Max | Step Size | Set Value | Actual Value | Cks. | |--------|--------|---------|---------|-----------|-----------|--------------|------| | 0x0B90 | 0x000F | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: - Fan Control Setting min. (usually in %, e.g. 0) (WORD) - Fan Control Setting max. (usually in %, e.g. 100) (WORD) - Fan Control Setting Step Size (usually in %, e.g. 25) (WORD) - Current Fan Control Set Value (WORD) - Actual Fan Control Value (WORD) #### **Notes:** - The current set value and the actual value can differ, e.g. if the temperature within the camera is too high. If the user has set a low value or even switched off the fan, the camera will override this value and drive the fan again in order to prevent damage by overtemperature. - The control values are usually in % where 0 means: Fan completely off, 100 % means: Fan is operated at maximum rpm. With the examples given above, possible settings are: 0, 25, 50, 75, 100. - The command is not supported by all cameras. See also below. #### c.) Failure / Warning Response Message: | Cod | е | Length | Message | Cks. | |------|-----|--------|-----------|------| | 0x0E | 3D0 | 0x0009 | 0x####### | 0x## | Return values: - PCO_ERROR_FIRMWARE_NOT_SUPPORTED or PCO_ERROR_FIRMWARE_UNKNOWN_COMMAND if the command is not supported by the camera. - Other error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.8 Set Fan Control Params Set the current value for the Fan Control setting. These command allows the user to control the camera fan, e.g. in order to minimize vibrations. Request the information about the possible values using the "Get Fan Control Status" command! #### a.) Command Message: | Code | Length | Fan Set Val. | Cks. | |--------|--------|--------------|------| | 0x0C10 | 0x0005 | 0x#### | 0x | Set Value (WORD). The set value must be within the limits which are provided Parameter: by the "Get Fan Control Status" command. #### b.) Response Message: | Code | Length | Fan Set Val. | Cks. | |--------|--------|--------------|------| | 0x0C90 | 0x0007 | 0x#### | 0x## | Return values: • Current Fan Control Set Value (WORD) #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x0CD0 | 0x0009 | 0x######## | 0x## | Return values: - PCO ERROR FIRMWARE NOT SUPPORTED or PCO_ERROR_FIRMWARE_UNKNOWN_COMMAND if the command is not supported by the camera. - PCO_ERROR_FIRMWARE_VALUE_OUT_OF_RANGE - Other error code, less than 0 (see also section 6. Error / Warning Codes) # 5.1.9 Get Number of HW IO Signals (dimax only) Use this command in order to request the number of IO signals and ports which can be configured by the HW IO commands. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x2511 | 0x0005 | 0x## | None Parameter: ## **b.**) Response Message: | Code | Length | Number | Cks. | |--------|--------|--------|------| | 0x2591 | 0x0007 | 0x#### | 0x## | Return values: • Number of signals/ports which can be configured. #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x25D1 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.10 **Get HW IO Signal Description (dimax only)** Get the description of the requested hardware IO signal. To get the number of available hardware IO signals, please call "Get HW IO SignalCount". Repeat the command <num> times and increment the index from 0 to num -1 to get all descriptors. To configure the signals use the command "Set HW IO Signal". To request the current configuration use "Get HW IO Signal". This functions is not available with all cameras. Actually it is implemented in the pco.dimax. ### a.) Command Message: | Code | Length | Index | Cks. | |--------|--------|--------|------| | 0x2611 | 0x0005 | 0x#### | 0x## | Parameter: None #### b.) Response Message: | Code | Length | SignalName | SignalDefs | SignalTypes | SignalPol | SignalFilter | Cks. | |--------|--------|-------------|-------------------|----------------------|------------------|--------------|------| | 0x2691 | 0x009F | 4 x 24 char | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | | | | A | ## ## ## ## ## ## | ## ## ## ## ## ## # | # ## ## ## ## ## | ## ## ## ## | | | | | | ## ## ## ## ## ## | ## ## ## ## ## ## # | # ## ## ## ## ## | ## ## ## ## | | | | | | ## ## ## ## ## ## | ## ## ## ## ## ## # | # ## ## ## ## ## | ## ## ## ## | | | | | | ## ## ## ## ## ## | ## ## ## ## ## ## ## | # ## ## ## ## ## | ## ## ## ## | | Return values: - Signal name, 4 fields of 24 characters, null terminated. The signal names correspond to one physical port and will show which function can be connected to that physical port. If there is only one function, only the first field contains a name, the other fields are filled with null strings - Signal Def. bit mask: - 0x0001: Signal can be enabled / disabled - 0x0002: Signal is output - Signal Types, bit mask describing which signal standard can be configured: - 0x0001: TTL - 0x0002: High level TTL - 0x0004: Contact - 0x0008: RS485 (differential) - Signal Polarity, bit mask describing possible polarity settings: - 0x0001: High level active - 0x0002: Low level active - 0x0004: Rising edge - 0x0008: Falling edge - Signal Filter, bit mask describing possible filter settings: - 0x0001: Filter off - -0x0002: Medium filter (time constant in the range of 10 µs) - -0x0004: High filter (time constant > 1 ms) #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0BD0 | 0x0009 | 0x####### | 0x## | Return values: - PCO_ERROR_FIRMWARE_NOT_SUPPORTED or PCO_ERROR_FIRMWARE_UNKNOWN_COMMAND if the command is not supported by the camera. - Other error code, less than 0 (see also section **6**. **Error / Warning Codes**) #### 5.1.11 **Get HW IO Signal (dimax only)** Get the current configuration of the requested hardware IO signal. #### a.) Command Message: | Code | Length | Index | Cks. | |--------|--------|--------|------| | 0x1912 | 0x0005 | 0x#### | 0x## | Parameter: Index of signal #### b.) Response Message: | Code | Length | Enable | Туре | Polarity | Filter | Select | Cks. | |--------|--------|--------|--------|----------|--------|--------|------| | 0x1992 | 0x000F | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: - Enable: - 0x0000: Signal is disabled (not used) - 0x0001: Signal is enabled - Type: - 0x0001: TTL - 0x0002: High level TTL - 0x0004: Contact - 0x0008: RS485 (differential) - Polarity: - 0x0001: High level active - 0x0002: Low level active - 0x0004: Rising edge - 0x0008: Falling edge - Filter: possible filter settings: - 0x0001: Filter off - -0x0002: Medium filter (time constant in the range of 10 µs) - -0x0004: High filter (time constant > 1 ms) - Select: Shows which function of the port is selected, if there are several functions which can be connected. (See also command "Get HW IO Signal Description (dimax only)"). #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x19D2 | 0x0009 | 0x####### | 0x## |
Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.1.12 Set HW IO Signal (dimax only) Set the current configuration of the requested hardware IO signal. #### a.) Command Message: | Code | Length | Index | Enable | Type | Polarity | Filter | Select | Cks. | |--------|--------|--------|--------|--------|----------|--------|--------|------| | 0x1A12 | 0x0011 | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Parameter: - Index: Index of signal to configure (as provided by the command "Get HW IO Signal Description (dimax only)"). - Enable: - 0x0000: Signal is disabled (not used) - 0x0001: Signal is enabled - Type: - 0x0001: TTL - 0x0002: High level TTL - 0x0004: Contact - 0x0008: RS485 (differential) - Polarity: - 0x0001: High level active - 0x0002: Low level active - 0x0004: Rising edge - 0x0008: Falling edge - Filter: possible filter settings: - 0x0001: Filter off - -0x0002: Medium filter (time constant in the range of 10 µs) - -0x0004: High filter (time constant > 1 ms) - Select: Shows which function of the port is selected, if there are several functions which can be connected. (See also command "Get HW IO Signal Description (dimax only)"). #### b.) Response Message: | Code | Length | Index | Enable | Туре | Polarity | Filter | Select | Cks. | |--------|--------|--------|--------|--------|----------|--------|--------|------| | 0x1A92 | 0x0011 | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: • Same as input parameter (see above) #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x1AD2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) # 5.2 Image Sensor The group id code for image sensor control commands is 0x11. Thus the least significant byte of all command id codes is 0x11. The command id codes are 0x??11, the code of the response message 0x??91 or in case of a failed command 0x??D1. #### Overview: | Command: | Cmd.
Code | Resp.
Code | Error/
Warning
Code | |-----------------------------------|--------------|---------------|---------------------------| | Get Camera Description | 0x0111 | 0x0191 | 0x01D1 | | Get Sensor Format | 0x1411 | 0x1491 | 0x14D1 | | Set Sensor Format | 0x1511 | 0x1591 | 0x15D1 | | Get ROI | 0x0211 | 0x0291 | 0x02D1 | | Set ROI | 0x0311 | 0x0391 | 0x03D1 | | Get Binning | 0x0411 | 0x0491 | 0x04D1 | | Set Binning | 0x0511 | 0x0591 | 0x05D1 | | Get Pixelrate | 0x0611 | 0x0691 | 0x06D1 | | Set Pixelrate | 0x0711 | 0x0791 | 0x07D1 | | Get Conversion Factor | 0x0811 | 0x0891 | 0x08D1 | | Set Conversion Factor | 0x0911 | 0x0991 | 0x09D1 | | Get Double Image Mode | 0x0A11 | 0x0A91 | 0x0AD1 | | Set Double Image Mode | 0x0B11 | 0x0B91 | 0x0BD1 | | Get CDI Mode (dimax only) | 0x2F11 | 0x2F91 | 0x2FD1 | | Set CDI Mode (dimax only) | 0x3011 | 0x3091 | 0x30D1 | | Get ADC Operation | 0x0C11 | 0x0C91 | 0x0CD1 | | Set ADC Operation | 0x0D11 | 0x0D91 | 0x0DD1 | | Get IR Sensitivity | 0x0E11 | 0x0E91 | 0x0ED1 | | Set IR Sensitivity | 0x0F11 | 0x0F91 | 0x0FD1 | | Get Cooling Setpoint Temperature | 0x1011 | 0x1091 | 0x10D1 | | Set Cooling Setpoint Temperature | 0x1111 | 0x1191 | 0x11D1 | | Get Offset Mode | 0x1211 | 0x1191 | 0x11D1 | | Get Noise Filter Mode | 0x1911 | 0x1991 | 0x19D1 | | Set Noise Filter Mode | 0x1A11 | 0x1A91 | 0x1AD1 | | Get Hot Pixel Correction Mode | 0x1E11 | 0x1E91 | 0x1ED1 | | Set Hot Pixel Correction Mode | 0x1F11 | 0x1F91 | 0x1FD1 | | Get DSNU Adjust Mode (dimax only) | 0x2C11 | 0x2C91 | 0x2CD1 | | Set DSNU Adjust Mode (dimax only) | 0x2D11 | 0x2D91 | 0x2DD1 | | Init DSNU Adjustment (dimax only) | 0x2E11 | 0x2E91 | 0x2ED1 | | Get Color Correction Matrix | 0x2911 | 0x2991 | 0x29D1 | # 5.2.1 Get Camera Description Request camera description (sensor type, horizontal / vertical / dynamic resolution/ binning/ delay/ exposure ...). The response message describes the sensor type, the readout hardware and its possible operating range. #### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0111 | 0x0005 | 0x17 | Parameter: None #### b.) Response Message: | Code | Length | Sensor
Type | Sensor
Sub Type | Hor. Res. standard | Vert. Res. standard | Hor. Res. extended | Vert. Res. extended | Dyn. Res. | |---------------------------|----------------------------|----------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------| | 0x0191 | 0x007D | 0x#### | Max Binn
hor | Binn hor steps | Max Binn
vert | Binn vert steps | ROI hor steps | ROI vert steps | ADC's | Pixelrate
1 | Pixelrate
2 | | 0x#### 0x####
| 0x####
| | Pixelrate
3 | Pixelrate
4 | Convers.
Factor 1 | Convers.
Factor 2 | Convers.
Factor 3 | Convers.
Factor 4 | IR – Sens. | Min Del
Time
(nsec) | Max Del
Time
(msec) | | 0x####
| 0x####
| 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x####
| 0x####
| | Min Del
Step
(nsec) | Min Exp
Time
(nsec) | Max Exp
Time
(msec) | Min Exp
Step
(nsec) | Min Del
Time IR
(nsec) | Max Del
Time IR
(msec) | Min Exp
Time IR
(nsec) | Max Exp
Time IR
(msec) | Time
Table | | 0x####
0x#### | | Double
Image
Mode | Min
Cooling
Setpoint | Max
Cooling
Setpoint | Default
Cooling
Setpoint | Power
Down
Mode | Offset
Regu-
lation | Color
Pattern | Color
Pattern
Type | Reserved | | 0x#### | General
Caps1 | Reserved | 0x####
0x#### | | Cks. | | | | | | | | | | 0x## | | | | | | | | | Page 34 of 151 File: Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL 02. Nov 2010 #### Return values: - image sensor type as word, see table "Sensor Type codes" below. - image sensor sub type as word. - horizontal resolution standard in pixels (all effective pixels). - vertical resolution standard in pixels (all effective pixels). - horizontal resolution extended in pixels (all pixels; dummy + dark + eff.). - vertical resolution extended in pixels (all pixels; dummy + dark + eff.). - dynamic resolution in bits/pixel. (i.e. 12, 14 ...) - max. binning value horizontal (allowed values from 1 to max. resolution) - binning steps horizontal - 1 = linear step (binning from 1 to max i.e. 1,2,3...max is possible) - 0 = binary step (binning from 1 to max i.e. 1,2,4,8,16...max is possible) - max. binning value vertical (allowed values from 1 to max. resolution) - binning steps vertical - 1 = linear step (binning from 1 to max i.e. 1,2,3...max is possible) - 0 = binary step (binning from 1 to max i.e. 1,2,4,8,16...max is possible) - ROI steps horizontal (e.g. 10, => ROI right = 1, 11, 21, 31 ...) - ROI steps vertical - ADC's (number of ADC's inside camera; i.e. 1..8) - pixelrate 1 (long word; frequency in Hz) - pixelrate 2 (long word; frequency in Hz; if not available, then value = 0) - pixelrate 3 (long word; fequency in Hz; if not available, then value = 0) - pixelrate 4 (long word; frequency in Hz; if not available, then value = 0) - conversion factor 1 (in electron / counts) (the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts) - conversion factor 2 (in electron / counts; if not available, then value = 0) (the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts) - conversion factor 3 (in electron / counts; if not available, then value = 0) (the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts) - conversion factor 4 (in electron / counts; if not available, then value = 0) (the value 100 corresponds to 1; i.e. 610 = 6.1 electron/counts) - IR-sensitivity; sensor can switch to improved IR sensitivity (0 = function not supplied; 1 = possible) - min. delay time in nsec (long word; non IR-sensitivity mode) - max. delay time in msec (long word; non IR-sensitivity mode) - min. delay time step in nsec (long word) Note: Applies both to non IR-sensitivity mode and IR-sensitivity mode - min. exposure time in nsec (long word; non IR-sensitivity mode) - max. exposure time in msec (long word; non IR-sensitivity mode) - min. exposure time step in nsec (long word) Note: Applies both to non IR-sensitivity mode and IR-sensitivity mode - min. delay time in nsec (long word; IR-sensitivity mode) - max. delay time in msec (long word; IR-sensitivity mode) - min. exposure time in nsec (long word; IR-sensitivity mode) - max. exposure time in msec (long word; IR-sensitivity mode) (Return values of command "Get Camera Description" continued) - time table; camera can perform a timetable with several delay/ exposures (0 = function not supplied; 1 = possible) - double image mode; camera can perform a double image with short interleave time between exposures (0 = function not supplied; 1 = possible) - min. cooling setpoint (in °C) (if all setpoints are 0, then cooling is not available) - max. cooling setpoint (in °C) (if all setpoints are 0, then cooling is not available) - default cooling setpoint (in °C) (if all setpoints are 0, then cooling is not available) - power down mode; switch sensor into power down mode for reduced dark current (0 = function not supplied; 1 = possible) - offset regulation; automatic offset regulation with reference Pixels (0 = function not supplied; 1 = possible) - color pattern (word), see detailed description below - color pattern type (word), where: - 1 is bayer pattern - 2 is bayer pattern CMY - reserved (word) - General Caps 1 (see table below) - reserved (7 long words + 1 word; for future use) | General Caps 1 masks | | | | | | |----------------------|--|--|--|--|--| | 0x00000001 | Camera has noise filter implemented | | | | | | 0x00000002 | Camera has a pseudo hot pixel filter | | | | | | 0x00000004 | Pseudo Hot pixel filter works only with
noise filter on | | | | | | 0x00000008 | Camera has implemented the "timestamp ASCII only mode" | | | | | | 0x00000010 | Camera is capable of transferring 2 x 12 Bit over the CameraLink interface | | | | | | 0x00000020 | Camera has the (delayed) record stop feature implemented | | | | | | 0x00000040 | Camera has a true hot pixel correction mode | | | | | To get the capability of the camera the just do a bit and operation using the mask bit. If the result is not zero, the camera has the feature implemented. See example code in C: ``` if (CamDesc.dwGeneralCaps1 & 0x00000001) // noise filter can be set ... ``` FRE/ LWA/ EO/ GHO/MBL | Sensor Type codes: monochrome sensors: | | color sensors: | | |--|--------|-------------------|--------| | Sony ICX285AL | 0x0010 | Sony ICX285AK | 0x0011 | | Sony ICX263AL | 0x0020 | Sony ICX263AK | 0x0021 | | Sony ICX274AL | 0x0030 | Sony ICX274AK | 0x0031 | | Sony ICX407AL | 0x0040 | Sony ICX407AK | 0x0041 | | Sony ICX414AL | 0x0050 | Sony ICX414AK | 0x0051 | | Kodak KAI-2000M | 0x0110 | Kodak KAI-2000CM | 0x0111 | | Kodak KAI-2001M | 0x0120 | Kodak KAI-2001CM | 0x0121 | | Kodak KAI-4010M | 0x0130 | Kodak KAI-4010CM | 0x0131 | | Kodak KAI-4020M | 0x0140 | Kodak KAI-4020CM | 0x0141 | | Kodak KAI-11000M | 0x0150 | Kodak KAI-11000CM | 0x0151 | | Micron MV13 bw | 0x1010 | Micron MV13 col | 0x1011 | **Note:** This list will be updated with new entries and available on the www.pco.de web page. # Description of the color pattern information inside the pco.camera descriptor. All color pco cameras work with the Bayer pattern demosaicking. The color filter pattern of those color CCD can be reduced to a 2x2 matrix. The CCD can be seen as a matrix of those 2x2 matrixes. It may occur that there is only a half matrix on the lower and right edge of the CCD. The wColorPattern inside the camera descriptor describes the upper left corner of the color CCD and determines the color values of the single entries in this 2x2 matrix. The WORD is divided into 4 nibbles with 4 bits for each nibble. Each nibble describes the color (see color definitions) the filter in the CCD has got at the corresponding position. Upper left is 0, upper right is 1, lower left is 2 and lower right is 3. | Color | hex code | |---------|----------| | red | 1H | | green | 2H | | blue | 4H | | cyan | 5H | | magenta | 6H | | yellow | 7H | Color definitions See the following example: ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x01D1 | 0x0009 | 0x######## | 0x## | ## 5.2.2 Get Sensor Format Get format of sensor. The [standard] format uses only effective pixels, while the [extended] format shows all pixels inclusive effective, dark, reference and dummy. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1411 | 0x0005 | 0x2A | Parameter: None ## b.) Response Message: | Code | Length | Format | Cks. | |--------|--------|--------|------| | 0x1491 | 0x0007 | 0x#### | 0x## | Return values: • x0000 = [standard] • x0001 = [extended] ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x14D1 | 0x0009 | 0x####### | 0x## | ## 5.2.3 Set Sensor Format Set format of sensor. The [standard] format uses only effective pixels, while the [extended] format shows all pixels inclusive effective, dark, reference and dummy. # a.) Command Message: | Code | Length | Format | Cks. | |--------|--------|--------|------| | 0x1511 | 0x0007 | 0x#### | 0x## | Parameter: • x0000 = [standard] • x0001 = [extended] **Note:** This command will be rejected, if Recording State is [run]. # b.) Response Message: | Code | Length | Format | Cks. | |--------|--------|--------|------| | 0x1591 | 0x0007 | 0x#### | 0x## | Return values: • x0000 = [standard] • x0001 = [extended] # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x15D1 | 0x0009 | 0x######## | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL ## **5.2.4 Get ROI** Get ROI (region or area of interest) window. The ROI is equal to or smaller than the absolute image area which is defined by the settings of **format** and **binning**. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0211 | 0x0005 | 0x18 | Parameter: None # b.) Response Message: | Code | Length | ROI x0 | ROI y0 | ROI x1 | ROI y1 | Cks. | |--------|--------|--------|--------|--------|--------|------| | 0x0291 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: • x0, x1, y0, y1: region of interest (in pixels) within the complete image of the sensor (see also figure below). # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x02D1 | 0x0009 | 0x######## | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL ### 5.2.5 **Set ROI** Set ROI (region or area of interest) window. The ROI must be equal to or smaller than the absolute image area which is defined by the settings of **format** and **binning**. ## a.) Command Message: | Code | Length | ROI x0 | ROI y0 | ROI x1 | ROI y1 | Cks. | |--------|--------|--------|--------|--------|--------|------| | 0x0311 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Parameter: • x0, x1, y0, y1: set region of interest (in pixels) within the complete image of the sensor. **Notes:** - valid ROI settings range from 1/1 to h_{max}/v_{max} (h_{max}/v_{max}) are dependent from the settings of **format** and **binning**) - values out of range result in a failure response message - the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | ROI x0 | ROI y0 | ROI x1 | ROI y1 | Cks. | |--------|--------|--------|--------|--------|--------|------| | 0x0391 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: • x0, x1, y0, y1: configured region of interest (in pixels) within the complete image of the sensor (see also figure below). **Notes:** • valid ROI settings range from 1/1 to h_{max}/v_{max} ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x03D1 | 0x0009 | 0x####### | 0x## | # 5.2.6 Get Binning Get binning information # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0411 | 0x0005 | 0x1A | Parameter: None ## b.) Response Message: | Code | Length | Binning x | Binning y | Cks. | |--------|--------|-----------|-----------|------| | 0x0491 | 0x0009 | 0x#### | 0x#### | 0x## | • current binning x (horizontal direction) and binning y (vertical direction). Return values: # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x04D1 | 0x0009 | 0x####### | 0x## | # 5.2.7 Set Binning Set binning ## a.) Command Message: | Code | Length | Binning x | Binning y | Cks. | |--------|--------|-----------|-----------|------| | 0x0511 | 0x0009 | 0x#### | 0x#### | 0x## | Parameter: • set binning x (horizontal direction) and binning y (vertical direction) **Notes:** - valid binning settings generally are 1, 2, 4, 8, 16, 32, other values may be possible depending on the camera type - values not valid result in a failure response message - the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | Binning x | Binning y | Cks. | |--------|--------|-----------|-----------|------| | 0x0591 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: • configured binning x (horizontal direction) and binning y (vertical direction) # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x05D1 | 0x0009 | 0x####### | 0x## | Return values: # 5.2.8 Get Pixelrate Get pixelrate for reading images from the image sensor. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0611 | 0x0005 | 0x1C | Parameter: None ## b.) Response Message: | Code | Length | Pixelrate | Cks. | |--------|--------|-----------|------| | 0x0691 | 0x0009 | 0x####### | 0x## | Return values: • current pixelrate as long word in Hz. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x06D1 | 0x0009 | 0x######## | 0x## | ## 5.2.9 Set Pixelrate Set pixelrate # a.) Command Message: | Code | Length | Pixelrate | Cks. | |--------|--------|-----------|------| | 0x0711 | 0x0009 | 0x####### | 0x## | Parameter: • pixelrate to be configured as long word in Hz. **Notes:** - valid values depend on camera type, the adjustable values are defined in the camera description - non valid values result in a failure response message - the command will be rejected, if Recording State is [run] ## b.) Response Message: | Code | Length | Pixelrate | Cks. | |--------|--------|-----------|------| | 0x0791 | 0x0009 | 0x####### | 0x## | Return values: • configured pixelrate as long word in Hz. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x07D1 | 0x0009 | 0x####### | 0x## | #### 5.2.10 **Get Conversion Factor** Get image sensor gain setting # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0811 | 0x0005 | 0x1E | Parameter: None ## b.) Response Message: | Code | Length | Conv. | Cks. | |--------|--------|--------|------| | 0x0891 | 0x0007 | 0x#### | 0x## | Return values: • current conversion factor in electrons/count (the variable must be divided by 100 to get the real value) i.e. 0x01B3 (hex) = 435 (decimal) = 4.35 electrons/count conversion factor must be valid as defined in the camera description ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------
-----------|------| | 0x08D1 | 0x0009 | 0x####### | 0x## | #### 5.2.11 **Set Conversion Factor** Set image sensor gain ## a.) Command Message: | Code | Length | Conv. | Cks. | |--------|--------|--------|------| | 0x0911 | 0x0007 | 0x#### | 0x## | Parameter: • conversion factor to be set in electrons/count (the variable must be divided by 100 to get the real value) i.e. 0x01B3 (hex) = 435 (decimal) = 4.35 electrons/count conversion factor must be valid as defined in the camera description **Notes:** non valid values result in a failure response message the command will be rejected, if Recording State is [run] # b.) Response Message: | Code | Length | Gain | Cks. | |--------|--------|--------|------| | 0x0991 | 0x0007 | 0x#### | 0x## | Return values: • Conversion Factor in electrons/count # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x09D1 | 0x0009 | 0x####### | 0x## | #### **Get Double Image Mode** 5.2.12 Get double image mode setting # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0A11 | 0x0005 | 0x20 | Parameter: None ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0A91 | 0x0007 | 0x#### | 0x## | Return values: • current mode: 0x0001 = double image mode ON, 0x0000 = double image mode OFF # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0AD1 | 0x0009 | 0x####### | 0x## | #### 5.2.13 **Set Double Image Mode** Set double image mode - some cameras (defined in the camera description) allow to make a double image with two exposures separated by a short interleaving time. ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0B11 | 0x0007 | 0x#### | 0x## | Parameter: • mode: 0x0001 = double image mode ON, 0x0000 = double image mode OFF **Notes:** • non valid values result in a failure response message the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0B91 | 0x0007 | 0x#### | 0x## | Return values: • configured mode: 0x0001 = double image mode ON, 0x0000 = double image mode OFF # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0BD1 | 0x0009 | 0x####### | 0x## | #### **Get CDI Mode (dimax only)** 5.2.14 Get CDI mode setting. See also "Set CDI Mode" command. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x2F11 | 0x0005 | 0x## | Parameter: None ## b.) Response Message: | Code | Length | Mode | Rsrvd | Cks. | |--------|--------|--------|--------|------| | 0x2F91 | 0x0009 | 0x#### | 0x0000 | 0x## | Return values: - Current mode: $0x0001 = CDI \mod ON$, $0x0000 = CDI \mod OFF$ - Reserved parameter, currently 0x0000 # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x2FD1 | 0x0009 | 0x######## | 0x## | #### 5.2.15 Set CDI Mode (dimax only) ### Set CDI mode. The CDI (Correlated Double Image) mode is a special mode optimized for best image quality. Each taken image has its reference image. The image processing is completely done within the camera. The table below shows a short summary of the CDI mode improvements vs, drawbacks: | Improvements of CDI Mode | Drawbacks of CDI Mode | |---|--| | Significantly reduced noise Image quality improved especially in dark images | Only half the images can be stored within
the same segment size (compared to
standard mode) | | Temperature effects will be dynamically compensated | Maximum frame-rate drops to the half,
compared to standard mode | | Improved dark offset stability | • There is a lower limit for the exposure time, which is about half the frame time at the maximum possible frame-rate. | ### Notes: - The CDI mode can be combined with all exposure trigger modes. - The CDI mode can be combined with the Camera Sync operation. - The image timing in CDI mode can be set by using the "Set Delay/Exposure Time" and the "Set Framerate" commands. - The CDI mode **cannot** be combined with the Double Image Mode. - Default mode after power up is CDI Mode off. - At the moment only the pco.dimax supports the CDI Mode. ### a.) Command Message: | Code | Length | Mode | Rsrvd | Cks. | |--------|--------|--------|--------|------| | 0x3011 | 0x0009 | 0x#### | 0x#### | 0x## | Parameter: • Mode: $0x0001 = CDI \mod ON$, $0x0000 = CDI \mod OFF$ • Rsrvd: Reserved for future use, set to 0x0000! **Notes:** • non valid values result in a failure response message • the command will be rejected, if Recording State is [run] File: Page 52 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL # b.) Response Message: | Code | Length | Mode | Rsrvd | Cks. | |--------|--------|--------|--------|------| | 0x3091 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: - Configured mode: $0x0001 = CDI \mod ON$, $0x0000 = CDI \mod OFF$ - Rsrvd: Reserved for future use, currently 0x0000. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x30D1 | 0x0009 | 0x####### | 0x## | #### 5.2.16 **Get ADC Operation** Get analog-digital-converter (ADC) operation for reading the image sensor data. Pixel data can be read out using one ADC (better linearity) or in parallel using two ADCs (faster). Only available for some camera models (defined in the camera description). ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0C11 | 0x0005 | 0x22 | Parameter: None ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0C91 | 0x0007 | 0x#### | 0x## | Return values: • current usage: 0x0001 = 1 ADC or 0x0002 = 2 ADCs are used... # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0CD1 | 0x0009 | 0x####### | 0x## | #### 5.2.17 **Set ADC Operation** Set analog-digital-converter (ADC) operation for reading the image sensor data. Pixel data can be read out using one ADC (better linearity) or in parallel using two ADCs (faster). Only available for some camera models. ## a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0D11 | 0x0007 | 0x#### | 0x## | Parameter: • operation to be set: 0x0001 = 1 ADC or 0x0002 = 2 ADCs should be used... **Notes:** non valid values result in a failure response message. the command will be rejected, if Recording State is [run] ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0D91 | 0x0007 | 0x#### | 0x## | Return values: • configured operation: 0x0001 = 1 ADC or 0x0002 = 2 ADCs are used... ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0DD1 | 0x0009 | 0x####### | 0x## | #### 5.2.18 **Get IR Sensitivity** Get IR sensitivity setting for the image sensor. Only available for special camera models with image sensors which have improved IR sensitivity. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0E11 | 0x0005 | 0x24 | Parameter: None ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0E91 | 0x0007 | 0x#### | 0x## | Return values: • current mode: 0x0001 = IR sensitivity ON or 0x0000 = IR sensitivity OFF # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x0ED1 | 0x0009 | 0x######## | 0x## | #### 5.2.19 **Set IR Sensitivity** Set IR sensitivity for the image sensor. Only available for special camera models with image sensors which have improved IR sensitivity. # a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0F11 | 0x0007 | 0x#### | 0x## | Parameter: • mode to be set: 0x0001 = IR sensitivity ON or 0x0000 = IR sensitivity OFF **Notes:** • non valid values result in a failure response message the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0F91 | 0x0007 | 0x#### | 0x## | Return values: • configured mode: 0x0001 = IR sensitivity ON or 0x0000 = IR sensitivity OFF # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0FD1 | 0x0009 | 0x####### | 0x## | #### 5.2.20 **Get Cooling Setpoint Temperature** Get the temperature setpoint for cooling the image sensor (only available for cooled cameras). # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1011 | 0x0005 | 0x26 | Parameter: None **Notes:** • the actual temperature of the sensor can be read with **get temperature** command (see 5.1.4) ## b.) Response Message: | Code | Length | Temp. | Cks. | |--------|--------|--------|------| | 0x1091 | 0x0007 | 0x#### | 0x## | Return values: • current cooling temperature setpoint as signed word in °C units # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x10D1 | 0x0009 | 0x####### | 0x## | Return values: #### 5.2.21 **Set Cooling Setpoint Temperature** Set the temperature setpoint for cooling the image sensor (only available for cooled cameras, the default setpoints are [0] in the camera description). ### a.) Command Message: | Code | Length | Temp. | Cks. | |--------|--------|--------|------| | 0x1111 | 0x0007 | 0x#### | 0x## | Parameter: • cooling temperature setpoint to be adjusted as signed word in °C units
Notes: - valid range depends on camera type, non valid values result in a failure response message - the actual temperature of the sensor can be read with **get temperature** command (see 5.1.4) # b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1191 | 0x0007 | 0x#### | 0x## | Return values: • configured cooling temperature setpoint as signed word in °C units # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x11D1 | 0x0009 | 0x####### | 0x## | #### **Get Offset Mode** 5.2.22 Get the mode for the offset regulation with reference pixels (see camera manual for further explanations). ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1211 | 0x0005 | 0x28 | Parameter: none # b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1291 | 0x0007 | 0x#### | 0x## | Return values: • mode: 0x0000 = [auto] or 0x0001 = [OFF] # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x12D1 | 0x0009 | 0x####### | 0x## | #### 5.2.23 **Set Offset Mode** Set the mode for the offset regulation with reference pixels (see camera manual for further explanations). ## a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1311 | 0x0007 | 0x#### | 0x## | Parameter: • mode: 0x0000 = [auto] or 0x0001 = [OFF] **Notes:** the command will be rejected, if Recording State is [run] # b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1391 | 0x0007 | 0x#### | 0x## | Return values: • mode: 0x0000 = [auto] or 0x0001 = [OFF] ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x13D1 | 0x0009 | 0x####### | 0x## | #### 5.2.24 **Get Noise Filter Mode** Get the actual noise filter mode You may request the General Caps 1 field in the camera descriptor to check, if a noise filter and a pseudo hot pixel correction is implemented (see 5.2.1 Get Camera Description). ### **Important Note:** There are two different hot pixel corrections: - A pseudo hot pixel correction which can be enabled together with the noise filter. The hot pixels are detected by comparing the pixel with its neighbours. If the neighbours are all within a certain range and the pixel differs significantly from the neighbours its seen as hot or dark pixel and will be corrected. - A "real" hot pixel correction, which gets the information about hot pixels from a list within the camera. The list is specific for each individual camera. The hot pixels have to be determined by a test procedure. (see 5.2.26 Get Hot Pixel Correction Mode and 5.2.27 Set Hot Pixel Correction Mode.) ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1911 | 0x0007 | 0x#### | 0x## | Parameter: mode: 0x0000 =Noise filter off 0x0001 =Noise filter on 0x0101 =Noise filter on and Pseudo Hotpixel **Notes:** - the command will be rejected, if Recording State is [run] - not all cameras have the noise filter implemented. ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1991 | 0x0007 | 0x#### | 0x## | Return values: • mode: 0x0000 =Noise filter off 0x0001 =Noise filter on 0x0101 =Noise filter on and Pseudo Hotpixel Correction File: Page 62 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x19D1 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) ### 5.2.25 Set Noise Filter Mode Set the noise filter mode ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1A11 | 0x0007 | 0x#### | 0x## | Parameter: • mode: 0x0000 = set Noise filter off0x0001 = set Noise filter on 0x0101 = set Noise filter on and enable Pseudo Hotpixel Correction Notes: • the command will be rejected, if Recording State is [run] not all cameras have the noise filter implemented. ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1A91 | 0x0007 | 0x#### | 0x## | Return values: • mode: 0x0000 =Noise filter off 0x0001 =Noise filter on 0x0101 =Noise filter on and Pseudo Hotpixel Correction ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x1AD1 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### 5.2.26 **Get Hot Pixel Correction Mode** Get the hot pixel correction mode Some cameras are capable of correcting hot pixels. This is done by replacing the value of the hot pixel by the average of its neighbours. The hot pixels are known because of a hot pixel list (see also commands: Fehler! Verweisquelle konnte nicht gefunden werden. and Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden. on the following pages.) How that correction works in detail depends on the implementation in the camera type. You may request the General Caps 1 field in the camera descriptor to check, if hot pixel correction is implemented (see 5.2.1 Get Camera Description). ## **Important Note:** There are two different hot pixel corrections: - A pseudo hot pixel correction which can be enabled together with the noise filter. The hot pixels are detected by comparing the pixel with its neighbours. If the neighbours are all within a certain range and the pixel differs significantly from the neighbours its seen as hot or dark pixel and will be corrected. - A "real" hot pixel correction, which gets the information about hot pixels from a list within the camera. The list is specific for each individual camera. The hot pixels have to be determined by a test procedure. ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1E11 | 0x0005 | 0x34 | None Parameter: ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1E91 | 0x0007 | 0x#### | 0x## | Return values: current mode: > 0x0001 = hot pixel correction mode ON, 0x0000 = hot pixel correction mode OFF 0x0100 = hot pixel correction test mode, reserved for future use! ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x1ED1 | 0x0009 | 0x######## | 0x## | • PCO_ERROR_FIRMWARE_NOT_SUPPORTED = 0x80031020, if hot pixel correction is not supported. File: Page 65 of 151 Author: Version: as of: FRE/ LWA/ EO/ GHO/MBL 02. Nov 2010 #### 5.2.27 **Set Hot Pixel Correction Mode** Set the hot pixel correction mode. See also 5.2.26 Get Hot Pixel Correction Mode. ## a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1F11 | 0x0007 | 0x#### | 0x## | Parameter: • mode: 0x0001 = hot pixel correction mode ON,0x0000 = hot pixel correction mode OFF 0x0100 = hot pixel correction test mode, reserved for future use! **Notes:** - non valid values result in a failure response message - the command will be rejected, if Recording State is [run] # b.) Response Message: | Code | Length | Gain | Cks. | |--------|--------|--------|------| | 0x1F91 | 0x0007 | 0x#### | 0x## | Return values: • configured mode: 0x0001 = hot pixel correction mode ON,0x0000 = hot pixel correction mode OFF 0x0100 = hot pixel correction test mode, reserved for future use! ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x1FD1 | 0x0009 | 0x####### | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO_ERROR_FIRMWARE_NOT_SUPPORTED (0x80031020), if hot pixel correction is not supported. FRE/ LWA/ EO/ GHO/MBL #### 5.2.28 **Get DSNU Adjust Mode (dimax only)** The DSNU Adjustment feature reduces fix pattern noise, also called "Dark Signal Non Uniformity" (DSNU). The behavoiur of the feature can be controlled the commands "Set DSNU Adjust Mode" and "Init DSNU Adjustment". The DSNU Adjustment feature is explained in detail by an application note. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x2C11 | 0x0005 | 0x## | Parameter: None ### b.) Response Message: | Code | Length | Mode | Rsrvd. | Cks. | |--------|--------|--------|--------|------| | 0x2C91 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: - current mode: - 0x0000 = DSNU Adjustment off - 0x0001 = DSNU Adjustment auto mode: Adjustment is done with Arm Camera Command - 0x0002 = DSNU Adjustment user mode: Adjustment is done on user request only - Rsrvd: reserved for future use ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x2CD1 | 0x0009 | 0x####### | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO_ERROR_FIRMWARE_NOT_SUPPORTED = 0x80031020, if DSNU adjustment is not supported. File: Page 67 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL #### 5.2.29 **Set DSNU Adjust Mode (dimax only)** The DSNU Adjustment feature reduces fix pattern noise, also called "Dark Signal Non Uniformity" (DSNU). The behavoiur of the feature can be controlled the commands "Set DSNU Adjust Mode" and "Init DSNU Adjustment". The DSNU Adjustment feature is explained in detail by an application note. ## a.) Command Message: | Code | Length | Mode | Rsrvd. | Cks. | |--------|--------|--------|--------|------| | 0x2D11 | 0x0009 | 0x#### | 0x#### | 0x## | Parameter: - mode: - None 0x0000 = DSNU Adjustment off - 0x0001 = DSNU Adjustment auto mode: Adjustment is done with Arm Camera Command - 0x0002 = DSNU Adjustment user mode: Adjustment is done on user request only - Rsrvd: reserved for
future use, set to 0x0000. ### b.) Response Message: | Code | Length | Mode | Rsrvd. | Cks. | |--------|--------|--------|--------|------| | 0x2D91 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: - mode: - 0x0000 = DSNU Adjustment off - 0x0001 = DSNU Adjustment auto mode: Adjustment is done with Arm Camera Command - 0x0002 = DSNU Adjustment user mode: Adjustment is done on user request only - Rsrvd: reserved for future use ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x2DD1 | 0x0009 | 0x####### | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO_ERROR_FIRMWARE_NOT_SUPPORTED = 0x80031020, if DSNU adjustment is not supported. FRE/ LWA/ EO/ GHO/MBL File: Page 68 of 151 Version: as of: Author: None # 5.2.30 Init DSNU Adjustment (dimax only) Initialise DSNU Adjustment, acquire the current DSNU pattern in order to remove the DSNU pattern subsequently from the recorded images. The DSNU Adjustment feature is explained in detail by an application note. ### a.) Command Message: | Code | Length | Mode | Rsrvd. | Cks. | |--------|--------|--------|--------|------| | 0x2E11 | 0x0009 | 0x#### | 0x#### | 0x## | Parameter: - mode: - 0x0003 = initialise DSNU Adjustment in automatic mode, with no interaction by the user - 0x0002 = initialise DSNU Adjustment in dark mode, i.e. the user has to ensure, that the sensor is completely dark, e.g. by covering the lens. - Rsrvd: reserved for future use, set to 0x0000. ### b.) Response Message: | Code | Length | Mode | Rsrvd. | Cks. | |--------|--------|--------|--------|------| | 0x2E91 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: - mode: - 0x0003 = initialise DSNU Adjustment in automatic mode, with no interaction by the user - 0x0002 = initialise DSNU Adjustment in dark mode, i.e. the user has to ensure, that the sensor is completely dark, e.g. by covering the lens. - Rsrvd: reserved for future use. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x2ED1 | 0x0009 | 0x####### | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO_ERROR_FIRMWARE_NOT_SUPPORTED = 0x80031020, if DSNU adjustment is not supported. File: Version: as of: Author: Page 69 of 151 #### 5.2.31 **Get Color Correction Matrix** Requests the Color Correction Matrix which is required for external color processing in order to get ideal RGB values. Note, that these values are not used by the camera. They are intended to be read out by the software processing the color images. Thus the software does not need to know the specific color performance of the camera. The matrix members are float numbers which are delivered as ASCII string. The format is always with a decimal point (not comma!), e.g. +1.2857 or -0.0570. The strings are null-terminated. ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x2911 | 0x0005 | 0x## | Parameter: None ### b.) Response Message: | Code | Length | CCM(0, 0) | CCM(0, 1) | CCM(0, 2) | | |--------|--------|-------------|-------------|-------------|------| | 0x2991 | 0x004D | ,######\0" | ,,######\0" | ,,######\0" | | | | | CCM(1, 0) | CCM(1, 1) | CCM(1, 2) | | | | | ,######\0" | "######\0" | ,,######\0" | | | | | CCM(2, 0) | CCM(2, 1) | CCM(2, 2) | Cks. | | | | ,,######\0" | ,######\0" | "######\0" | 0x## | Return values: • List No. (see above) **Notes:** • Length of the ASCII fields is always 8 byte. $$\begin{pmatrix} R \\ G \\ B \end{pmatrix}_{CORRECTED} = \begin{pmatrix} CCM(0,0) & CCM(0,1) & CCM(0,2) \\ CCM(1,0) & CCM(1,1) & CCM(1,2) \\ CCM(2,0) & CCM(2,1) & CCM(2,2) \end{pmatrix} \bullet \begin{pmatrix} R \\ G \\ B \end{pmatrix}_{ORIGINAL}$$ # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x29D1 | 0x0009 | 0x######## | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO ERROR FIRMWARE NOT SUPPORTED = 0x80031020, if the camera type does not support the command. # 5.3 Timing The group id code for the Timing Control Commands is 0x12. Thus the least significant byte of all command id codes is 0x12. The command id codes are 0x??12, the code of the response message 0x??92 or in case of a failed command 0x??D2. ## Overview: | Command: | Cmd.
Code | Resp.
Code | Error/
Warning
Code | |---------------------------------------|--------------|---------------|---------------------------| | Get Timebase | 0x0C12 | 0x0C92 | 0x0CD2 | | Set Timebase | 0x0D12 | 0x0D92 | 0x0DD2 | | Get Delay / Exposure Time | 0x0112 | 0x0192 | 0x01D2 | | Set Delay / Exposure Time | 0x0212 | 0x0292 | 0x02D2 | | Get delay / exposure time table | 0x0A12 | 0x0A92 | 0x0AD2 | | Set delay / exposure time table. | 0x0B12 | 0x0B92 | 0x0BD2 | | Get FPS Exposure Mode | 0x1312 | 0x1392 | 0x13D2 | | Set FPS Exposure Mode | 0x1412 | 0x1492 | 0x14D2 | | Get Framerate | 0x1712 | 0x1792 | 0x17D2 | | Set Framerate | 0x1812 | 0x1892 | 0x18D2 | | Get Trigger Mode | 0x0312 | 0x0392 | 0x03D2 | | Set Trigger Mode | 0x0412 | 0x0492 | 0x04D2 | | Force Trigger | 0x0512 | 0x0592 | 0x05D2 | | Get Camera Sync Mode (dimax only) | 0x1C12 | 0x1C92 | 0x1CD2 | | Set Camera Sync Mode (dimax only) | 0x1D12 | 0x1D92 | 0x1DD2 | | Get Fast Timing Mode | 0x1F12 | 0x1F92 | 0x1FD2 | | Set Fast Timing Mode | 0x2012 | 0x2092 | 0x20D2 | | Get Camera Busy status | 0x0612 | 0x0692 | 0x06D2 | | Get Power Down Mode | 0x0E12 | 0x0E92 | 0x0ED2 | | Set Power Down Mode | 0x0F12 | 0x0F92 | 0x0FD2 | | Get User Power Down Time | 0x0712 | 0x0792 | 0x07D2 | | Set User Power Down Time | 0x0812 | 0x0892 | 0x08D2 | | Get <exp trig=""> Signal Status</exp> | 0x0912 | 0x0992 | 0x09D2 | | Get COC Runtime | 0x1012 | 0x1092 | 0x10D2 | ## 5.3.1 Get Timebase Get timebase for delay and exposure times. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0112 | 0x0005 | 0x23 | Parameter: None # b.) Response Message: | Code | Length | Timebase
Delay | Timebase
Exposure | Cks. | |--------|--------|-------------------|----------------------|------| | 0x0192 | 0x0009 | 0x#### | 0x#### | 0x## | Return values: • - timebase for delay and exposure times - -0x0000 = timebase = [ns] (10⁻⁹s) - -0x0001 = timebase = [µs] (10⁻⁶s) - -0x0002 = timebase = [ms] (10⁻³s) ### Note: delay and exposure values are multiplied with the configured timebase unit values # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x0CD2 | 0x0009 | 0x######## | 0x## | # 5.3.2 Set Timebase Set timebase for delay and exposure times. # a.) Command Message: | Code | Length | Timebase
Delay | Timebase
Exposure | Cks. | |--------|--------|-------------------|----------------------|------| | 0x0D12 | 0x0009 | 0x#### | 0x#### | 0x## | Parameter: - timebase to be selected for delay and exposure times - -0x0000 = timebase = [ns] (10⁻⁹s) - -0x0001 = timebase = [µs] (10⁻⁶s) - -0x0002 = timebase = [ms] (10⁻³s) # b.) Response Message: | Code | Length | Timebase
Delay | Timebase
Exposure | Cks. | |--------|--------|-------------------|----------------------|------| | 0x0D92 | 0x0009 | 0x#### | 0x#### | 0x## | - Return values: configured timebase for delay and exposure times - -0x0000 = timebase = [ns] (10⁻⁹s) - -0x0001 = timebase = [µs] (10⁻⁶s) - -0x0002 = timebase = [ms] (10⁻³s) ### Note: delay and exposure values are multiplied with the configured timebase unit values ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0DD2 | 0x0009 | 0x####### | 0x## | # 5.3.3 Get Delay / Exposure Time Get delay / exposure time # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0112 | 0x0005 | 0x18 | Parameter: None # b.) Response Message: | Code | Length | Delay | Exposure | Cks. | |--------|--------|------------|------------|------| | 0x0192 | 0x000D | 0x######## | 0x######## | 0x## | Return values: • delay and exposure time as multiples of timebase units ## Note: - delay and exposure values are multiplied with the configured timebase unit values - for image sequences see 5.3.5 and 5.3.6. ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x01D2 | 0x0009 | 0x######## | 0x## | # 5.3.4 Set Delay / Exposure Time Set delay / exposure time # a.) Command Message: | Code | Length | Delay | Exposure | Cks. | |--------|--------|-----------|------------|------| | 0x0212 | 0x000D | 0x####### | 0x######## | 0x## | Parameter: delay and exposure time to be adjusted as multiples of timebase units ## b.) Response Message: | Code | Length | Delay | Exposure | Cks. | |--------|--------|------------|------------|------| | 0x0292 | 0x000D | 0x######## | 0x######## | 0x## | Return values: • configured delay and exposure time as multiples of timebase units ### Note: - delay and exposure values are multiplied with the configured timebase unit values - If **exposure** is set to zero an error is generated - for image sequences see 5.3.5 and 5.3.6. ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D2 | 0x0009 | 0x####### | 0x## | # 5.3.5 Get Delay / Exposure Time Table Get delay / exposure time table #### **General note:** For some camera types it is possible to define a table with delay / exposure times (defined in the camera description). After start of exposure the camera will take a series of consecutive images with delay and exposure times as defined in the table. Therefore a flexible message format has been defined. The table consists of maximum 16 delay / exposure time pairs. If an exposure time entry is set to the value zero, then at execution time this delay/ exposure pair is disregarded and the sequence is started automatically with
the first entry in the table. This results in a sequence of 1 to 16 images with different delay and exposure time settings. External or automatic triggering of images is fully functional for every image in the sequence. If the user wants maximum speed (at CCDs overlapping exposure and read out is taken), [auto trigger] should be selected and the sequence should be controlled with the <acq enbl> input. ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0A12 | 0x0005 | 0x21 | Parameter: None #### b.) Response Message: | Code | Length | Delay 1 | Exp. 1 | Delay/ Exp. 2 - 15 | Delay 16 | Exp. 16 | Cks. | |--------|--------|-----------|------------|--------------------|-----------|-----------|------| | 0x0A92 | 0x0085 | 0x####### | 0x######## | / | 0x####### | 0x####### | 0x## | Return values: • exposure and delay table (16 pairs) as multiples of timebase units #### Note: - delay and exposure values are multiplied with the configured timebase unit values - If an exposure value is set to zero, the sequence is repeated from the beginning (first entry) - If exposure 1 is set to zero, an error is generated - If all exposure entries are non zero, the sequence consists of 16 images # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0AD2 | 0x0009 | 0x####### | 0x## | # 5.3.6 Set Delay / Exposure Time Table Set delay / exposure time table. #### **General note:** For some camera types it is possible to define a table with delay / exposure times (defined in the camera description). After start of exposure the camera will take a series of consecutive images with delay and exposure times as defined in the table. Therefore a flexible message format has been defined. The table consists of maximum 16 delay / exposure time pairs. If an exposure time entry is set to the value zero, then at execution time this delay/ exposure pair is disregarded and the sequence is started automatically with the first entry in the table. This results in a sequence of 1 to 16 images with different delay and exposure time settings. External or automatic triggering of images is fully functional for every image in the sequence. If the user wants maximum speed (at CCDs overlapping exposure and read out is taken), [auto ext. trigger] should be selected and the sequence should be controlled with the <acq enbl> input. #### Note: The commands set delay / exposure time and set delay / exposure time table can only be used alternatively. Using set delay / exposure time has the same effect as using the table command and setting exposure 2 entry to zero. ### a.) Command Message: First message: | Code | Length | Delay 1 | Exp. 1 | Delay/ Exp. 2 - 15 | Delay 16 | Exp. 16 | Cks. | |--------|--------|-----------|-----------|---------------------------|-----------|-----------|------| | 0x0B12 | 0x0085 | 0x####### | 0x####### | / | 0x####### | 0x####### | 0x## | Return values: exposure and delay table (16 pairs) to be adjusted as multiples of timebase units #### **Notes:** - delay and exposure values are multiplied with the configured timebase unit values - If an exposure value is set to zero, the sequence is repeated from the beginning (first entry) - If exposure 1 is set to zero, an error is generated - If all exposure entries are non zero, the sequence consists of 16 images - The command will be rejected, if Recording State is [run] #### b.) Response Message: | Code | Length | Delay 1 | Exp. 1 | Delay/ Exp. 2 - 15 | Delay 16 | Exp. 16 | Cks. | |--------|--------|------------|------------|---------------------------|-----------|-----------|------| | 0x0B92 | 0x0085 | 0x######## | 0x######## | / | 0x####### | 0x####### | 0x## | Return values: • configured exposure and delay table (16 pairs) as multiples of timebase units # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0BD2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) # 5.3.7 Get FPS Exposure Mode The FPS exposure mode is useful if you want to get the maximum exposure time for maximum frame rate. The maximum image framerate (FPS = Frames Per Second) depends on pixelrate, vertical ROI and exposure time. FPS = FPS_{max} $$\approx \frac{Pixelrate}{Pixels / line \times n_{lines}}$$ FPS = $\frac{1}{t_{expos}}$ valid for: $t_{expos} <= 1 / FPS_{max}$ valid for: $t_{expos} > 1 / FPS_{max}$ where: Pixels / line: Pixel in one full line, horizontal ROI will not affect this number because always a full line (including dummy pixel) has to be read Number of lines (vertical ROI) n_{lines}: **Note:** The formula for FPS_{max} is a rough estimate. Actually the FPS_{max} will be less due to some overhead time, which depends on camera and sensor type as well as operating modes. As can be seen from the formula the exposure time affects the frame rate, if it gets longer than the frame rate period time. If the camera is in "FPS Exposure Mode" the maximum possible exposure time is automatically set such that $FPS = FPS_{max}$. Please note, that, if the "FPS Exposure Mode" is on, the "Set Delay/Exposure Time" or Set Delay/Exposure Time Table" commands ar ignored! The FPS Exposure Mode is available for the pco.1200hs camera model only! ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1312 | 0x0005 | 0x29 | Parameter: None ### b.) Response Message: | Code | Length | Mode | Exp. time | Cks. | |--------|--------|--------|------------|------| | 0x1392 | 0x000B | 0x#### | 0x######## | 0x## | Return values: - Mode: current mode - 0 = FPS Exposure Mode off, exposure time set by "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" command. - 1 = FPS Exposure Mode on, exposure time set automatically to 1 / FPS_{max} "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" commands are ignored. - Exposure time: The exposure time that will be set if "FPS Exposure Mode" is on. The exposure time depends on the current settings of vertical ROI and Pixelrate. The returned time is always in ns! ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x13D2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL # 5.3.8 Set FPS Exposure Mode See "Get FPS Exposure Mode" for further explanations! ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1412 | 0x0007 | 0x#### | 0x## | #### Parameter: - Mode to be set: - 0 = FPS Exposure Mode off, exposure time set by "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" command. - 1 = FPS Exposure Mode on, exposure time set automatically to 1 / FPS_{max} "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" commands are ignored. Note: The FPS Exposure Mode is available for the pco.1200hs camera model only! # b.) Response Message: | Code | Length | Mode | Exp. time | Cks. | |--------|--------|--------|------------|------| | 0x1392 | 0x000B | 0x#### | 0x######## | 0x## | #### Return values: - Mode: current mode - 0 = FPS Exposure Mode off, exposure time set by "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" command. - 1 = FPS Exposure Mode on, exposure time set automatically to 1 / FPS_{max} "Set Delay/Exposure Time" or "Set Delay/Exposure Time Table" commands are ignored. - Exposure time: The exposure time that will be set if "FPS Exposure Mode" is on. The exposure time depends on the current settings of vertical ROI and Pixelrate. The returned time is always in ns! ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x14D2 | 0x0009 | 0x####### | 0x## | ## 5.3.9 Get Framerate Get framerate and exposure time. See also "Set Framerate" # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1712 | 0x0005 | 0x2E | Parameter: None # b.) Response Message: | Code | Length | Status | Framerate | Exposure | Cks. | |--------|--------|--------|------------|-----------|------| | 0x1792 | 0x000F | 0x#### | 0x######## | 0x####### | 0x## | Return values: - Status of last "Set Framerate command" - Framerate, or 0 if not configured, in mHz - Exposure time in ns #### Note: • It is strongly recommend to use either the "Set Framerate" or the "Set Delay/Exposure Time" command! # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x17D2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### 5.3.10 Set Framerate Set framerate and exposure time. This command is intended to set directly the framerate and the exposure time of the camera. The framerate is limited by the readout time and the exposure time: Framerate $$\leq \frac{1}{t_{readout}}$$ Framerate $\leq \frac{1}{t_{expos}}$ Please note that there are some overhead times, therefore the real values can differ slightly, e.g. the maximum framerate will be a little bit less than 1 / exposure time. The mode parameter of the function call defines, how the function works if these conditions are not met. ## a.) Command Message: | Code | Length | Mode | Framerate | Exposure | Cks. | |--------|--------|--------|------------|------------|------| | 0x1812 | 0x000F | 0x#### | 0x######## | 0x######## | 0x## | Parameter: - Mode, defines the way of operation when settings are inconsistent, where: - 0x0000: auto mode (camera decides which parameter will be trimmed) - 0x0001: Framerate has priority, (exposure time will be trimmed) - 0x0002: Exposure time has priority, (framerate will be trimmed) - 0x0003: Strict, function shall return with error if values are not possible. - Framerate in mHz (milli!), thus e.g. 1kHz = 1000000 - Exposure time in ns ### b.)
Response Message: | Code | Length | Status | Framerate | Exposure | Cks. | |--------|--------|--------|------------|------------|------| | 0x1892 | 0x000F | 0x#### | 0x######## | 0x######## | 0x## | Return values: • - Status, where: - 0x0000: Settings consistent, all conditions met - 0x0001: Framerate trimmed, framerate was limited by readout time - 0x0002: Framerate trimmed, framerate was limited by exposure time - 0x0004: Exposure time trimmed, exposure time cut to frame time - configured framerate and exposure time ## Note: - Framerate and exposure time are also affected by the "Set Delay/Exposure Time" command. It is strongly recommend to use either the "Set Framerate" or the "Set Delay/Exposure Time" command! - Function is not supported by all cameras, at that moment only by the pco.dimax! FRE/ LWA/ EO/ GHO/MBL # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x18D2 | 0x0009 | 0x####### | 0x## | #### 5.3.11 **Get Trigger Mode** Get image trigger mode (for further explanations see camera manual) ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0312 | 0x0005 | 0x1A | Parameter: None ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0392 | 0x0007 | 0x#### | 0x## | Return values: - Current trigger mode: - 0x0000 = [auto trigger] An exposure of a new image is started automatically best possible compared to the readout of an image. If using a CCD and images are taken in a sequence, then exposures and readout of the sensor are started simultaneously. Signals at the trigger input (<exp trig>) are irrelevant. - 0x0001 = [software trigger]: An exposure can only be started by a **force trigger** command. - 0x0002 = [extern exposure & software trigger]:A delay / exposure sequence is started at the RISING or FALLING edge (depending on the DIP switch setting) of the trigger input (<exp trig>). - 0x0003 = [extern exposure control]:The exposure time is defined by the pulse length at the trigger input(<exp trig>). The delay and exposure time values defined by the set/request delay and exposure command are ineffective. (Exposure time length control is also possible for double image mode; exposure time of the second image is given by the readout time of the first image.) Note: In modes [extern exposure & software trigger] and [extern exposure control], it depends also on the selected acgire mode, if a trigger edge at the trigger input (<exp trig>) will be effective or not (see also 5.5.9 Set Acquire mode (Auto / External)). A software trigger however will always be effective independent of the state of the <acq enbl> input (concerned trigger modes are: [software trigger] and [extern exposure & software trigger]. #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x03D2 | 0x0009 | 0x####### | 0x## | #### 5.3.12 **Set Trigger Mode** Set image trigger mode ## a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0412 | 0x0007 | 0x#### | 0x## | #### Parameters: - trigger mode to be selected: - 0x0000 = [auto trigger] An exposure of a new image is started automatically best possible compared to the readout of an image. If using a CCD and images are taken in a sequence, then exposures and readout of the sensor are started simultaneously. Signals at the trigger input (<exp trig>) are irrelevant. - 0x0001 = [software trigger]:An exposure can only be started by a **force trigger** command. - 0x0002 = [extern exposure & software trigger]:A delay / exposure sequence is started at the RISING or FALLING edge (depending on the DIP switch setting) of the trigger input (<exp trig>). - 0x0003 = [extern exposure control]:The exposure time is defined by the pulse length at the trigger input(<exp trig>). The delay and exposure time values defined by the set/request delay and exposure command are ineffective. (Exposure time length control is also possible for double image mode; exposure time of the second image is given by the readout time of the first image.) #### Notes: - the command will be rejected, if Recording State is [run] - In modes [extern exposure & software trigger] and [extern exposure control], it depends also on the selected acqire mode, if a trigger edge at the trigger input (<exp trig>) will be effective or not (see also 5.5.9 Set Acquire mode (Auto / External)). A software trigger however will always be effective independent of the state of the <acq enbl> input (concerned trigger modes are: [software trigger] and [extern exposure & software trigger]. ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0492 | 0x0007 | 0x#### | 0x## | #### Return values: - Configured trigger modes: - 0x0000 = [auto trigger] - 0x0001 = [software trigger] - 0x0002 = [extern exposure & software trigger] - 0x0003 = [extern exposure control] FRE/ LWA/ EO/ GHO/MBL ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x04D2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) #### 5.3.13 **Force Trigger** This software command starts an exposure if the **trigger mode** is in the state [software trigger] (0x0001) or in the state [extern exposure & software trigger] (0x0002). If in state [extern exposure control] (0x0003), nothing happens. The camera has to be ready: (**recording** = [start]) and [not]busy]. ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0512 | 0x0005 | 0x1C | Parameter: None ## b.) Response Message: | Code | Length | Return | Cks. | |--------|--------|--------|------| | 0x0592 | 0x0007 | 0x#### | 0x## | Return values: - result: - 0x0000 = trigger command was not successful because of camera beingbusy - 0x0001 = a new image exposure has been triggered by the command #### Note: - Due to response and processing times e.g. caused by the interface and/or the operating system on the PC, the delay between command and actual trigger may be several 10ms up to 100ms. - A force trigger command will be effective independent of the selected acquire mode and independent of the state of the <acq enbl> input. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x05D2 | 0x0009 | 0x######## | 0x## | #### 5.3.14 **Get Camera Sync Mode (dimax only)** Gets the camera synchronisation mode for a dimax. Dimax cameras can be cascaded in order to synchronize the timing of a camera chain. It is mandatory to set one of the cameras in the chain to master mode. Usually this is the first camera connected to the chain. All output side connected cameras should be set to slave mode. Those cameras will follow the timing of the master camera, thus all timing settings are disabled at the slave cameras. Please note that the camera synchronization feature is explained in detail by an application note. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1C12 | 0x0005 | 0x## | Parameter: None #### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1C92 | 0x0007 | 0x#### | 0x## | Return values: current camera synchronisation mode: 0x0000 =Stand alone: Camera does not participate in the chain, but does not interrupt the chain 0x0001 = Camera is master and generates sync signals 0x0002 =Camera is slave, timing is controlled by master sync signals #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x1CD2 | 0x0009 | 0x####### | 0x## | #### 5.3.15 **Set Camera Sync Mode (dimax only)** Sets the camera synchronisation mode for a dimax. Dimax cameras can be cascaded in order to synchronize the timing of a camera chain. It is mandatory to set one of the cameras in the chain to master mode. Usually this is the first camera connected to the chain. All output side connected cameras should be set to slave mode. Those cameras will follow the timing of the master camera, thus all timing settings are disabled at the slave cameras. Please note that the camera synchronization feature is explained in detail by an application note. # a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1D12 | 0x0007 | 0x#### | 0x## | Parameter: None #### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x1D92 | 0x0007 | 0x#### | 0x## | Return values: • current camera synchronisation mode: 0x0000 =Stand alone: Camera does not participate in the chain, but does not interrupt the chain 0x0001 = Camera is master and generates sync signals 0x0002 =Camera is slave, timing is controlled by master sync signals #### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x1DD2 | 0x0009 | 0x######## | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### 5.3.16 **Get Fast Timing Mode** Get Fast timing mode. The fast timing mode minimizes the part of the frame time which is not used for the exposure. Thus at a given frame rate the exposure can be maximized. When using the Fast Timing Mode there are same tradeoffs like an increased offset variation. The command is used to switch the Fast Timing Mode on or off. ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1F12 | 0x0005 | 0x## | Parameters: none ### b.) Response Message: | Code | Length | Mode | Rsrvd0 | Rsrvd1 | Rsrvd2 | Rsrvd3 | Cks. | |--------|--------|--------|--------|--------|--------|--------|------| | 0x1F92 | 0x000F | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: - fast timing mode to be selected: - 0x0000 = [fast timing off], default
setting.0x0001 = [fast timing on]. - Rsrvd0 to Rsrvd3: Reserved for future use, will be 0x0000 as long as not used. ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x1FD2 | 0x0009 | 0x######## | 0x## | #### 5.3.17 **Set Fast Timing Mode** Set Fast timing mode. The fast timing mode minimizes the part of the frame time which is not used for the exposure. Thus at a given frame rate the exposure can be maximized. When using the Fast Timing Mode there are same tradeoffs like an increased offset variation. The command is used to switch the Fast Timing Mode on or off. ## a.) Command Message: | Code | Length | Mode | Rsrvd0 | Rsrvd1 | Rsrvd2 | Rsrvd3 | Cks. | |--------|--------|--------|--------|--------|--------|--------|------| | 0x1F12 | 0x000F | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Parameters: - fast timing mode to be selected: - 0x0000 = [fast timing off], default setting.0x0001 = [fast timing on]. - Rsrvd0 to Rsrvd3: Reserved for future use, set to 0x0000! Notes: the command will be rejected, if Recording State is [run] # b.) Response Message: | Code | Length | Mode | Rsrvd0 | Rsrvd1 | Rsrvd2 | Rsrvd3 | Cks. | |--------|--------|--------|--------|--------|--------|--------|------| | 0x1F92 | 0x000F | 0x#### | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: see Parameters of Command Message ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x1FD2 | 0x0009 | 0x######## | 0x## | #### 5.3.18 **Get Camera Busy status** Get camera busy status: a trigger is ignored, if the camera is still busy ([exposure] or [readout]). In case of **force trigger** command the user may request the camera busy status in order to be able to start a valid force trigger command. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0612 | 0x0005 | 0x1D | Parameter: none ### b.) Response Message: | Code | Length | Status | Cks. | |--------|--------|--------|------| | 0x0692 | 0x0007 | 0x#### | 0x## | Return values: - camera busy status: - 0x0000 = camera is [not busy], ready for a new trigger command - 0x0001 = camera is [busy], not ready for a new trigger command #### Note: The status is according to the hardware signal
 signal
 status output> at the power supply unit. Due to response and processing times e.g. caused by the interface and/or the operating system, the delay between the delivered status and the actual status may be several 10ms up to 100ms. If timing is critical it is strongly recommended to use the hardware signal (<busy>). ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x06D2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### 5.3.19 **Get Power Down Mode** Get mode for CCD or CMOS power down threshold time (see camera manual) # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0E12 | 0x0005 | 0x25 | Parameter: None # b.) Response Message: | Code | Length | Pdn. Mode | Cks. | |--------|--------|-----------|------| | 0x0E92 | 0x0007 | 0x#### | 0x## | Return values: • current mode: 0x0000 = [auto] or 0x0001 = [user] # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0ED2 | 0x0009 | 0x####### | 0x## | #### 5.3.20 **Set Power Down Mode** Set mode for CCD or CMOS power down threshold time control. Power down functions are controllable when **power down mode** = [user] is selected (see camera manual). # a.) Command Message: | Code | Length | Pdn. Mode | Cks. | |--------|--------|-----------|------| | 0x0F12 | 0x0007 | 0x#### | 0x## | Parameter: • mode to be selected: 0x0000 = [auto] or 0x0001 = [user] Notes: • the command will be rejected, if Recording State is [run] # b.) Response Message: | Code | Length | Pdn. Mode | Cks. | |--------|--------|-----------|------| | 0x0F92 | 0x0007 | 0x#### | 0x## | Return values: • configured power down mode # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0FD2 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### **Get User Power Down Time** 5.3.21 Get user values for CCD or CMOS power down threshold time (see camera manual). # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0712 | 0x0005 | 0x1E | Parameter: None # b.) Response Message: | Code | Length | Pdn. Time | Cks. | |--------|--------|-----------|------| | 0x0792 | 0x0009 | 0x####### | 0x## | Return values: • current CCD power down threshold time as multiples of ms (0ms .. 47.9days) # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x07D2 | 0x0009 | 0x####### | 0x## | #### 5.3.22 **Set User Power Down Time** Set user values for CCD or CMOS power down threshold time (see camera manual). If the exposure time is greater than the selected Power Down Time, than the CCD or CMOS sensor is switched (electrically) into a special power down mode to reduce dark current effects. If power **down mode** = [user] is selected, the power down threshold time set by this function will become effective. The value set by this function will become effective if **power down mode** = [user] is selected. # a.) Command Message: | Code | Length | Pdn. Time | Cks. | |--------|--------|-----------|------| | 0x0812 | 0x0009 | 0x####### | 0x## | Parameter: • CCD power down threshold time to be selected as multiples of ms (0ms ... 47.9days) Notes: the command will be rejected, if Recording State is [run] #### b.) Response Message: | Code | Length | Pdn. Time | Cks. | |--------|--------|-----------|------| | 0x0892 | 0x0009 | 0x####### | 0x## | Return values: • configured CCD power down threshold time as multiples of ms (0ms ... 47.9days) ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x08D2 | 0x0009 | 0x####### | 0x## | #### 5.3.23 Get <exp trig> Signal Status Get the current status of the <exp trig> user input (one of the <control in> inputs at the rear of pco.power; see 1.2). If the signal level at the <exp trig> input is HIGH and the DIP switch shows then the Status is TRUE. If the signal level at the <exp trig> input is HIGH and the DIP switch shows then the Status is FALSE. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0912 | 0x0005 | 0x20 | Parameter: none ## b.) Response Message: | Code | Length | Status | Cks. | |--------|--------|--------|------| | 0x0992 | 0x0007 | 0x#### | 0x## | Return values: - <exp trig> signal status: - -0x0000 = [FALSE] - -0x0001 = [TRUE] - the following combinations are possible: DIP switch: - input signal: HIGH Status: TRUE DIP switch: Status: FALSE - input signal: HIGH DIP switch: - input signal: LOW Status: FALSE - input signal: LOW DIP switch: Status: TRUE #### Note: due to response and processing times e.g. caused by the interface and/or the operating system, the delay between the software delivered status and the actual status may be several 10ms up to 100ms. If timing is critical it is strongly recommended to use other trigger modes. ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x09D2 | 0x0009 | 0x####### | 0x## | # 5.3.24 Get COC Runtime Requests the run time for one image. The run time is the time which is required before a new image can be started. Thus the runtime determines the frame rate. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x1012 | 0x0005 | 0x27 | Parameter: none ## b.) Response Message: | Code | Length | Runtime
[s] | Runtime
[ns] | Cks. | |--------|--------|----------------|-----------------|------| | 0x1092 | 0x000F | 0x####### | 0x####### | 0x## | Return values: • Time for one image is: Runtime [s] + Runtime [ns] ### Note: • A few preliminary firmware versions deliver the second parameter as μ s! # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x10D2 | 0x0009 | 0x####### | 0x## | # 5.4 Storage The group id code for the Storage Control Commands is 0x13. Thus the least significant byte of all command id codes is 0x13. The command id codes are 0x??13, the code of the response message 0x??93 or in case of a failed command 0x??D3. ## Overview: | Command: | Cmd.
Code | Resp.
Code | Error/
Warning
Code | |-----------------------------|--------------|---------------|---------------------------| | Get Camera RAM size | 0x0113 | 0x0193 | 0x01D3 | | Get Camera RAM Segment Size | 0x0213 | 0x0293 | 0x02D3 | | Set Camera RAM Segment Size | 0x0313 | 0x0393 | 0x03D3 | | Clear RAM Segment | 0x0413 | 0x0493 | 0x04D3 | | Get Active RAM Segment | 0x0513 | 0x0593 | 0x05D3 | | Set Active RAM Segment | 0x0613 | 0x0693 | 0x06D3 | # 5.4.1 Get Camera RAM size Get the camera RAM (camRAM) size ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0113 | 0x0005 | 0x19 | Parameter: None ## b.) Response Message: | Code | Length | RAM size | Page Size | Cks. | |--------|--------|-----------|-----------|------| | 0x0193 | 0x000B | 0x####### | 0x#### | 0x## | Return values: - RAM size: size of the total camera RAM as multiples of pages - page size: size of one page as multiples of pixels #### Note: One page is the smallest unit for RAM segmentation as well as for storing images. Segment sizes can only configured as multiples of pages. The size reserved for one image is also calculated as multiples of whole pages, therefore there may be some unused RAM memory if the page size is not exactly a multiple of the image
size. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x01D3 | 0x0009 | 0x####### | 0x## | # 5.4.2 Get Camera RAM Segment Size Get camera RAM (camRAM) segment size ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0213 | 0x0005 | 0x1A | Parameter: None # b.) Response Message: | Code | Length | Segm. 1 size | Segm. 2 size | Segm. 3 size | Segm. 4 size | Cks. | |--------|--------|--------------|--------------|--------------|--------------|------| | 0x0293 | 0x0015 | 0x####### | 0x####### | 0x####### | 0x####### | 0x## | Return values: • size of segment 1 .. segment 4 as multiples of RAM pages #### Note: - the sum of all segment sizes must not be larger than the total size of the RAM (as multiples of pages) - size = [0] indicates that the segment will not be used - using only one segment is possible by assigning the total RAM size to segment 1 and 0x0000 to all other segments. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D3 | 0x0009 | 0x####### | 0x## | # 5.4.3 Set Camera RAM Segment Size Set Camera RAM Segment Size. ## a.) Command Message: | Code | Length | Segm. 1 size | Segm. 2 size | Segm. 3 size | Segm. 4 size | Cks. | |--------|--------|--------------|--------------|--------------|--------------|------| | 0x0313 | 0x0015 | 0x####### | 0x####### | 0x####### | 0x####### | 0x## | Return values: • size of segment 1 .. segment 4 as multiples of RAM pages #### Note: - the sum of all segment sizes must not be larger than the total size of the RAM (as multiples of pages) - a single segment size can have the value 0x0000, but the sum of all 4 segments must be greater than 0x0000 - the command will be rejected, if Recording State is [run] - the segment size must be large enough to store at least 3 images - The function will result in all segments to be cleared. All images recorded before are lost! ## b.) Response Message: | Code | Length | Segm. 1 size | Segm. 2 size | Segm. 3 size | Segm. 4 size | Cks. | |--------|--------|--------------|--------------|--------------|--------------|------| | 0x0393 | 0x0015 | 0x####### | 0x####### | 0x####### | 0x####### | 0x## | Return values: • configured sizes of segment 1 .. segement4 as multiples of RAM pages ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x03D3 | 0x0009 | 0x####### | 0x## | # 5.4.4 Clear RAM Segment Clear active camera RAM segment, delete all image info and prepare segment for new images # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0413 | 0x0005 | 0x1C | Parameter: None # b.) Response Message: | Code | Length | Cks. | |--------|--------|------| | 0x0493 | 0x0005 | 0x9C | Return values: none # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x04D3 | 0x0009 | 0x####### | 0x## | # 5.4.5 Get Active RAM Segment Get the active camera RAM segment - the active segment is the segment where images are stored # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0513 | 0x0005 | 0x1D | None Parameter: ## b.) Response Message: | Code | Length | Segm. | Cks. | |--------|--------|--------|------| | 0x0593 | 0x0007 | 0x#### | 0x## | Return values: • segment number of the currently active segment # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x05D3 | 0x0009 | 0x####### | 0x## | # 5.4.6 Set Active RAM Segment Set the active camera RAM segment - the active segment is the segment where images are stored # a.) Command Message: | Code | Length | Segm. | Cks. | |--------|--------|--------|------| | 0x0613 | 0x0007 | 0x#### | 0x## | Parameter: • segment number of the segment to be set active ## b.) Response Message: | Code | Length | Segm. | Cks. | |--------|--------|--------|------| | 0x0693 | 0x0007 | 0x#### | 0x## | Return values: • segment number of the configured active segment # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x06D3 | 0x0009 | 0x####### | 0x## | • error code, less than 0 (see also section 6. Error / Warning Codes) Return values: # 5.5 Recording The group id code for the Recording Control Commands is 0x14. Thus the least significant byte of all command id codes is 0x14. The command id codes are 0x??14, the code of the response message 0x??94 or in case of a failed command 0x??D4. ## Overview: | Command: | Cmd.
Code | Resp.
Code | Error/
Warning
Code | |---|--------------|---------------|---------------------------| | Get Storage Mode (Recorder / FIFO buffer) | 0x0114 | 0x0194 | 0x01D4 | | Set Storage Mode (Recorder / FIFO buffer) | 0x0214 | 0x0294 | 0x02D4 | | Get Recorder Submode (Sequence / Ring buffer) | 0x0314 | 0x0394 | 0x03D4 | | Set Recorder Submode (Sequence / Ring buffer) | 0x0414 | 0x0494 | 0x04D4 | | Get Recording Status | 0x0514 | 0x0594 | 0x05D4 | | Set Recording State | 0x0614 | 0x0694 | 0x06D4 | | Arm Camera | 0x0A14 | 0x0A94 | 0x0AD4 | | Get Acquire mode (Auto / External) | 0x0714 | 0x0794 | 0x07D4 | | Set Acquire mode (Auto / External) | 0x0814 | 0x0894 | 0x08D4 | | Get <acq enbl=""> Signal Status</acq> | 0x0914 | 0x0994 | 0x09D4 | | Set Date / Time | 0x0B14 | 0x0B94 | 0x0BD4 | | Get Timestamp Mode | 0x0C14 | 0x0C94 | 0x0CD4 | | Set Timestamp Mode | 0x0D14 | 0x0D94 | 0x0DD4 | | Get Record Stop Event | 0x0E14 | 0x0E94 | 0x0ED4 | | Set Record Stop Event | 0x0F14 | 0x0F94 | 0x0FD4 | | Stop Record | 0x1014 | 0x1094 | 0x10D4 | # 5.5.1 Get Storage Mode (Recorder / FIFO buffer) Get storage mode [recorder] or [FIFO buffer] # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0114 | 0x0005 | 0x1A | Parameter: None # b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0194 | 0x0007 | 0x#### | 0x## | Return values: - current storage mode (see boxes below): - 0x0000 = [recorder] mode - 0x0001 = [FIFO buffer] mode | Recorder Mode | FIFO Buffer mode | |--|---| | images are recorded and stored within the internal camera memory (camRAM) Live View transfers the most recent image to the PC (for viewing / monitoring) indexed or total readout of images after the recording has been stopped | all images taken are transferred to the PC in chronological order camera memory (camRAM) is used as huge FIFO buffer to bypass short bottlenecks in data transmission if buffer overflows the oldest images are overwritten | # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x01D4 | 0x0009 | 0x####### | 0x## | # 5.5.2 Set Storage Mode (Recorder / FIFO buffer) Set storage mode [recorder] or [FIFO buffer] # a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0214 | 0x0007 | 0x#### | 0x## | Parameter: - storage mode to be selected (see boxes below): - 0x0000 = [recorder] mode - 0x0001 = [FIFO buffer] mode Notes: • the command will be rejected, if Recording State is [run] ## b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0294 | 0x0007 | 0x#### | 0x## | Return values: - configured storage mode (see boxes below): - 0x0000 = [recorder] mode - 0x0001 = [FIFO buffer] mode | Recorder Mode | FIFO Buffer mode | |--|--| | images are recorded and stored within the internal camera memory (camRAM) Live View transfers the most recent image to the PC (for viewing / monitoring) indexed or total readout of images after the recording has been stopped | all images taken are transferred to the PC in chronological order camera memory (camRAM) is used as huge FIFO buffer to bypass short bottlenecks in data transmission if buffer overflows the oldest images are overwritten if Set Recorder = [stop] is sent, recording is stopped and the transfer of the current image to the PC is finished. Images not read are stored within the segment and can be read with the Read Image From Segment command. | # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D4 | 0x0009 | 0x####### | 0x## | # 5.5.3 Get Recorder Submode (Sequence / Ring buffer) Get recorder submode: [sequence] or [ring buffer] (see explanation boxes below). Recorder submode is only available if the storage
mode is set to [recorder]. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0314 | 0x0005 | 0x1C | Parameter: None # b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0394 | 0x0007 | 0x#### | 0x## | Return values: - current recorder submode: - 0x0000 = [sequence] - 0x0001 = [ring buffer]. | recorder submode = [sequence] | recorder submode =[ring buffer] | |---|---| | recording is stopped when the allocated
buffer is full | • camera records continuously into ring
bufferif the allocated buffer overflows, the
oldest images are overwrittenrecording is
stopped by software or disabling acquire
signal (<acq enbl="">)</acq> | ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x03D4 | 0x0009 | 0x####### | 0x## | # 5.5.4 Set Recorder Submode (Sequence / Ring buffer) Set recorder submode: [sequence] or [ring buffer] (see explanation boxes below). Recorder submode is only available if the storage mode is set to [recorder]. ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0414 | 0x0007 | 0x#### | 0x## | Parameter: - recorder submode to be selected: - 0x0000 = [sequence] - 0x0001 = [ring buffer] Notes: the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0494 | 0x0007 | 0x#### | 0x## | Return values: - configured recorder submode: - 0x0000 = [sequence] - 0x0001 = [ring buffer] | recorder submode = [sequence] | recorder submode = [ring buffer] | |---|---| | recording is stopped when the allocated
buffer is full | • camera records continuously into ring
bufferif the allocated buffer overflows, the
oldest images are overwrittenrecording is
stopped by software or disabling acquire
signal (<acq enbl="">)</acq> | ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x04D4 | 0x0009 | 0x######## | 0x## | # 5.5.5 Get Recording Status Requests the current **recording status**. The **recording status** controls the status of the camera. If the **recording status** is [run], images can be started by **exposure trigger** and <acq enbl>. If the **recording status** is [clear]'ed or [stop]'ped, all image readout or exposure sequences are stopped and the sensors (CCD or CMOS) are running in a special idle mode to prevent dark charge accumulation. The **recording status** has the highest priority compared to functions like <acq enbl> or **exposure** trigger. The **recording status** is controlled by: software command: **set recording status** = [run] The **recording status** is cleared by: - powering ON the camera - software command: **set recording status** = [stop] - software command: reset all settings to default values ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0514 | 0x0005 | 0x1E | Parameter: None ### b.) Response Message: | Code | Length | Status | Cks. | |--------|--------|--------|------| | 0x0594 | 0x0007 | 0x#### | 0x## | Return values: - current recording status: - 0x0001 = camera is running, in**recording status**= [run] - 0x0000 = camera is idle or [stop]'ped, not ready to take images ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x05D4 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL # 5.5.6 Set Recording State Sets the current **recording status**. The **recording status** controls the status of the camera. If the **recording status** is [run], images can be started by **exposure trigger** and <acq enbl>. If the **recording status** is [clear]'ed or [stop]'ped, all image readout or exposure sequences are stopped and the sensors (CCD or CMOS) are running in a special idle mode to prevent dark charge accumulation. The **recording status** has the highest priority compared to functions like <acq enbl> or **exposure** trigger. The **recording status** is controlled by: software command: **set recording status** = [run] The **recording status** is cleared by: - powering ON the camera - software command: **set recording status** = [stop] - software command: **reset** all settings to default values #### Notes: - It is necessary to issue an arm camera command before every set recording status command in order to ensure that all settings are accepted correctly. Do not change settings between arm camera command and set recording status command. - If a set recording status = [stop] command is sent and the current status is already [stop]'ped, nothing will happen (no warning, error message) - If a set recording status = [run] command is sent and the current status is already [run], a warning message will be generated - If a successful **set recording status** = [run] command is sent and recording is started, the images from a previous record to the active segment are lost! ### a.) Command Message: | Code | Length | Status | Cks. | |--------|--------|--------|------| | 0x0614 | 0x0007 | 0x#### | 0x## | Parameter: - recording status to be selected: - 0x0001 = [run] - 0x0000 = [stop], switch camera to idle mode FRE/ LWA/ EO/ GHO/MBL # b.) Response Message: | Code | Length | PostLen | Cks. | |--------|--------|---------|------| | 0x0694 | 0x0007 | 0x#### | 0x## | Return values: - Configured recording status: - 0x0001 = [run], camera is in recording mode. - 0x0000 = [stop] camera is idle, not ready to take images. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x06D4 | 0x0009 | 0x####### | 0x## | ### 5.5.7 Arm Camera Arms, i.e. prepares the camera for a consecutive set recording status = [run] command. All configurations and settings made up to this moment are accepted and the internal settings of the camera are prepared. Thus the camera is able to start immediately when the set recording status = [run] command is performed. **Note:** It is required to issue an **arm camera** command before every **set recording state** = [run] command in order to ensure that all settings are accepted correctly. Do not change settings between arm camera command and set recording status command. ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0A14 | 0x0005 | 0x23 | Parameter: None ### b.) Response Message: | Code | Length | Cks. | |--------|--------|------| | 0x0A94 | 0x0005 | 0xA3 | Return values: None ### c.) Failure / Warning Response Message: | | | | Cks. | |--------|--------|-----------|------| | 0x0AD4 | 0x0009 | 0x####### | 0x## | # 5.5.8 Get Acquire mode (Auto / External) Get acquire mode: [auto] or [external] (see camera manual for explanation) # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0714 | 0x0005 | 0x20 | Parameter: None ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0794 | 0x0007 | 0x#### | 0x## | Return values: - current acquire mode: - 0x0000 = [auto] the external <acq enbl> input is ignored - 0x0001 = [external] external signal at the <acq enbl> input controls whether images are stored or not ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x07D4 | 0x0009 | 0x####### | 0x## | # 5.5.9 Set Acquire mode (Auto / External) Set acquire mode: [auto] or [external] (see camera manual for explanation) ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0814 | 0x0007 | 0x#### | 0x## | Parameter: - acquire mode to be selected: - 0x0000 = [auto] all images taken are stored - 0x0001 = [external] the external control input <acq enbl> is a static enable signal of images. If this input is TRUE (level depending on the DIP switch), exposure triggers are accepted and images are taken. If this signal is set FALSE, all exposure triggers are ignored and the sensor readout is stopped. Notes: the command will be rejected, if Recording State is [run] ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0894 | 0x0007 | 0x#### | 0x## | Return values: - configured acquire mode: - 0x0000 = [auto] all images taken are stored - 0x0001 = [external] the external control input <acq enbl> is a static enable signal of images. If this input is TRUE (level depending on the DIP switch), exposure triggers are accepted and images are taken. If this signal is set FALSE, all exposure triggers are ignored and the sensor readout is stopped. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x08D4 | 0x0009 | 0x######## | 0x## | #### 5.5.10 Get <acq enbl> Signal Status Get the current status of the <acq enbl> user input (one of the <control in> inputs at the rear of pco.power; see 1.2). If the signal level at the <acq enbl> input is HIGH and the DIP switch shows ☐ then the Status is TRUE. If the signal level at the <acq enbl> input is HIGH and the DIP switch shows \subseteq then the Status is FALSE. \subseteq or \subseteq ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0914 | 0x0005 | 0x22 | Parameter: none ### b.) Response Message: | Code
| Length | Status | Cks. | |--------|--------|--------|------| | 0x0994 | 0x0007 | 0x#### | 0x## | Return values: - <acq enbl> signal status: - -0x0000 = [FALSE] - -0x0001 = [TRUE] - the following combinations are possible: - input signal: HIGH DIP switch: \square Status: TRUE DIP switch: ☐ - input signal: HIGH Status: FALSE - input signal: LOW Status: FALSE - input signal: LOW DIP switch: □ Status: TRUE ### Note: Due to response and processing times e.g. caused by the interface and/or the operating system, the delay between the delivered status and the actual status may be several 10 ms up to 100 ms. If timing is critical it is strongly recommended to use other trigger modes. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x09D4 | 0x0009 | 0x####### | 0x## | ### 5.5.11 Set Date / Time Set date and time for the **timestamp** function. The date and time is updated automatically, as long as the camera is supplied with power. When powering up the camera, then this command should be done once. ### a.) Command Message: | Code | Length | Date | Time | Cks. | |--------|--------|------------------------|------------------------|------| | 0x0B14 | 0x000D | 0x##
0x##
0x#### | 0x00##
0x##
0x## | 0x## | Parameter: date: day:month:year binary coded example: 21:march:2003 => 0x150307D3 • time: hours:min:sec binary coded example: 17h:05min:32sec => 0x00110520 ### b.) Response Message: | Code | Length | Date | Time | Cks. | |--------|--------|------|------------------------|------| | 0x0B94 | 0x000D | | 0x00##
0x##
0x## | 0x## | Parameter: • date: day:month:year binary coded example: 21:march:2003 => 0x150307D3 • time: hours:min:sec binary coded example: 17h:05min:32sec => 0x00110520 ### Note: - [ms] and $[\mu s]$ values are set to zero, when this command is executed - this command should be performed, when powering up the camera ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0BD4 | 0x0009 | 0x####### | 0x## | #### 5.5.12 **Get Timestamp Mode** Get mode of the timestamp function. ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0C14 | 0x0005 | 0x25 | Parameter: none ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0C94 | 0x0007 | 0x#### | 0x## | Parameter: - 0x0000 = no stamp in image - 0x0001 = BCD coded stamp in the first 14 pixel - 0x0002 = BCD coded stamp in the first 14 pixel + ASCII text - 0x0003 = only ASCII text ### Note: details about modes are explained in the following command set timestamp mode. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x0CD4 | 0x0009 | 0x######## | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) FRE/ LWA/ EO/ GHO/MBL #### 5.5.13 **Set Timestamp Mode** Set mode of the timestamp function. To obtain information about the recording time of images this command can be useful. It writes a continuous image number and date / time information with a resolution of 10 µs direct into the raw image data. The first 14 pixels (top left corner) are used to hold this information. The numbers are coded in BCD with one byte per pixel, which means that every pixel can hold 2 digits. If the pixels have more resolution as 8 bits, then the BCD digits are right bound adjusted and the upper bits are zero. Additionally to this 14 pixels, the information can be written in ASCII text for direct inspection. A 8 by 8 pixel array is used per ASCII digit. The digits are displayed below the BCD coded line. ### a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0D14 | 0x0007 | 0x#### | 0x## | Parameter: - 0x0000 = no stamp in image - 0x0001 = BCD coded stamp in the first 14 pixel - 0x0002 = BCD coded stamp in the first 14 pixel + ASCII text - 0x0003 = ASCII text only ### Note: - the image number is set to value = [1], when an **arm** command is performed - using this command without setting the [date] / [time] results in an error message ### Format of BCD coded pixels: | pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 | pixel 6 | pixel 7 | |---------------------------|------------------|------------------|---------------------------|---------------|---------------|----------| | image
counter
(MSB) | image
counter | image
counter | image
counter
(LSB) | year
(MSB) | year
(LSB) | month | | (00 99) | (00 99) | (00 99) | (00 99) | (20) | (03 99) | (01 12) | | pixel 8 | pixel 9 | pixel 10 | pixel 11 | pixel 12 | pixel 13 | pixel 14 | | day | h | min | S | μs * 10000 | μs * 100 | μs | | (01 31) | (00 23) | (00 59) | (00 59) | (00 99) | (00 99) | (00 90) | ### Format of ASCII text: image number: 8 digits [1...99999999] 9 digits [01JAN2003 ... 31DEZ9999] date: time: 15 digits [00:00:00.000000 ... 23:59:59.999990] number, date and time are separated by blanks Example: ## 00103822 03JAN2003 17:35:12.376810 00103822 image number: date: 03 January 2003 17 h, 35 min, 12 s, 376 ms, 810 μs time: ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0D94 | 0x0007 | 0x#### | 0x## | Parameter: - 0x0000 = no stamp in image - 0x0001 = BCD coded stamp in the first 14 pixel - 0x0002 = BCD coded stamp in the first 14 pixel + ASCII text - 0x0003 = ASCII text ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x0DD4 | 0x0009 | 0x######## | 0x## | #### 5.5.14 **Get Record Stop Event** For explanation see Set Record Stop Event. ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0E14 | 0x0005 | 0x27 | Parameter: None ### b.) Response Message: | Code | Length | Mode | Delay (Images) | Cks. | |--------|--------|--------|----------------|------| | 0x0E94 | 0x000F | 0x#### | 0x####### | 0x## | Return values: - Mode: record stop event configuration: - 0x0000 = no record stop event is accepted (default after power-on). - 0x0001 = record stop by software command - 0x0002 = record stop by edge at the < acq. enbl. > input or by software - Delay in images: number of images which are taken after the record stop event. If the number of images are taken, record will be stopped automatically. Notes: - Use the record stop event function only when Storage Mode = [Recorder] and Recorder Submode = [Ring buffer]! - The command is not available for all cameras. Currently it is only implemented within the pco.1200hs ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0ED4 | 0x0009 | 0x####### | 0x## | #### 5.5.15 **Set Record Stop Event** This command can be used for setting up the record stop event. After a stop event the camera records the configured number of images and stops after that. The command is useful to record a series of images to see what happens before and after the stop event. A record stop event can be either a software command or an edge at the <acq enbl> input (at the power unit). The edge detection depends on the DIP switch setting at the power unit. If the DIP switch shows \Box then a rising edge is the stop event. If the DIP switch shows \Box then a falling edge is the stop event. The software command is the command "Stop Record" described below. Use the record stop even function only when Storage Mode = [Recorder] and Recorder Submode = [Ring buffer]! ### a.) Command Message: | Code | Length | Mode | Delay (Images) | Cks. | |--------|--------|--------|----------------|------| | 0x0F14 | 0x000F | 0x#### | 0x####### | 0x## | Parameter: - Mode: record stop event configuration: - 0x0000 = no record stop event is accepted - 0x0001 = record stop by software command - 0x0002 = record stop by edge at the <acq. enbl.> input or by software - Delay in images: number of images which are taken after the record stop event. If the number of images is taken, record will be stopped automatically. Notes: - Use the record stop event function only when Storage Mode = [Recorder] and Recorder Submode = [Ring buffer]! - Due to internal timing issues the actual number of images taken after the event may differ by +/- 1 from the configured number. - The command is not available for all cameras. Currently it is only implemented for the pco.1200hs FRE/ LWA/ EO/ GHO/MBL ### b.) Response Message: | Code | Length | Mode | Delay (Images) | Cks. | |--------|--------|--------|----------------|------| | 0x0F94 | 0x000F | 0x#### | 0x####### | 0x## | ### Return values: - Mode: record stop event configuration: - 0x0000 = no record stop event is accepted - 0x0001 = record stop by software command - 0x0002 = record stop by edge at the <acq. enbl.> input or by software - Delay in images: number of images which are taken after the record stop event. If the number of images is taken, record will be stopped automatically. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x08D4 | 0x0009 | 0x####### | 0x## | #### 5.5.16 **Stop Record** This command is useful to generate a stop event by software for the record stop event mode. See also Set Record Stop Event. ### a.) Command Message: | Code | Length | Resrvd | Reserved | Cks. | |--------|--------|--------|------------|------| | 0x1014 | 0x000F | 0x0000 | 0x00000000 | 0x## | Parameter: Reserved for future use, set to 0! Notes: - The camera has to configured by the command Set Record Stop Event in order to accept the command (modes 0x0001 and 0x0002). - The command is not available for all cameras. Currently it is only implemented for the pco.1200hs # b.) Response Message: | Code | Length | Resrvd | Reserved | Cks. | |--------|--------|--------|-----------|------| | 0x1094 | 0x000F | 0x#### | 0x####### | 0x## | Return values: Not used now. ###
c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x08D4 | 0x0009 | 0x######## | 0x## | Return values: - error code, less than 0 (see also section 6. Error / Warning Codes) - PCO_ERROR_FIRMWARE_NOTPOSSIBLE when: - Recording state = [off] - the configured stop event is mode 0x0000 (no event is accepted) #### **Image Read** 5.6 The group id code for the Image Read Commands is 0x15. Thus the least significant byte of all command id codes is 0x15. The command id codes are 0x??15, the code of the response message 0x??95 or in case of a failed command 0x??D5. ### Overview: | Command: | Cmd.
Code | Resp.
Code | Error/
Warning
Code | |---|--------------|---------------|---------------------------| | Get Segment Image Settings | 0x0115 | 0x0195 | 0x01D5 | | Get Number Of Images in Segment | 0x0215 | 0x0295 | 0x02D5 | | Read Images from Segment (Recorder Mode only) | 0x0515 | 0x0595 | 0x05D5 | | Request Image | 0x0615 | 0x0695 | 0x06D5 | | Cancel Image Transfer | 0x0715 | 0x0795 | 0x07D5 | | Repeat Image | 0x0815 | 0x0895 | 0x08D5 | | Get Bit Alignment | 0x0915 | 0x0995 | 0x09D5 | | Set Bit Alignment | 0x0A15 | 0x0A95 | 0x0AD5 | | Play Images from Segment | 0x0B15 | 0x0B95 | 0x0BD5 | | Get Play Position | 0x0C15 | 0x0C95 | 0x0CD5 | | Set Interface Output Format | 0x1016 | 0x1096 | 0x10D6 | | | | | | # 5.6.1 Get Segment Image Settings Get the image settings for images stored into a segment. ### a.) Command Message: | Code | Length | Segm. | Cks. | |--------|--------|--------|------| | 0x0115 | 0x0007 | 0x#### | 0x## | Parameter: • number of segment ### b.) Response Message: | Code | Length | Segm. | Res. h. | Res. v. | Bin. x | Bin y. | ROI x0 | ROI y0 | ROI x1 | ROI y1 | Cks. | |--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|------| | 0x0195 | 0x0017 | 0x#### 0x## | Return values: - Segm. = number of segment - Res. h. = resulting horizontal resolution (sensor resolution, ROI, binning) - Res. v. = resulting vertical resolution (sensor resolution, ROI, binning) - Bin. x, y = binning setting for horizontal (x) and vertical (y) direction - ROI x0, y0, x1, y1 = configured region of interest (ROI, in pixels) within the complete image of the sensor See also: - 5.2.1 Get Camera Description - 5.2.6 Get Binning ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x01D5 | 0x0009 | 0x####### | 0x## | # 5.6.2 Get Number Of Images in Segment Get the number of valid images within the segment. The operation is slightly different due to the selected storage mode: In [recorder mode], if recording is not stopped and in [FIFO buffer mode] the number of images is dynamic due to read and write accesses to the camera RAM. If the camera storage mode is in [recorder mode] and recording is stopped, the number is fixed. # a.) Command Message: | Code | Length | Segm. | Cks. | |--------|--------|--------|------| | 0x0215 | 0x0007 | 0x#### | 0x## | Return values: • segment of the camera RAM which is to be requested ### b.) Response Message: | Code | Length | Segm. | Valid Num. | Max. Num. | Cks. | |--------|--------|--------|------------|-----------|------| | 0x0295 | 0x000F | 0x#### | 0x######## | 0x####### | 0x## | Return values: - Segm. = segment of the camera RAM which is to be requested - Valid Num. = number of valid images in the segment. - Max. Num. = maximum number of images which may be saved to this segment In [FIFO buffer mode] the ratio of valid number of images to the maximum number of images is a kind of filling level indicator. ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D5 | 0x0009 | 0x####### | 0x## | # 5.6.3 Read Images from Segment (Recorder Mode only) Read the images recorded to the camera RAM. **Note:** Command is only valid, if **storage mode** is set to [recorder] and recording to the camera RAM segment is stopped! ### a.) Command Message: | Code | Length | Segment | Start Image | Last Image | Cks. | |--------|--------|---------|-------------|------------|------| | 0x0515 | 0x000F | 0x#### | 0x######## | 0x######## | 0x## | Parameter: - Segment = number of segment of the RAM segment to read from - Start Image = index of image in the segment to begin readout with - Last Image = index of image in the segment which is to be read at last where: index is running from 1 to the number of valid images in segment **Note:** If reading only one image, then set [Start Image] and [Last Image] to the same value! ### b.) Response Message: | Code | Length | Segment | Start Image | Last Image | Cks. | |--------|--------|---------|-------------|------------|------| | 0x0515 | 0x000F | 0x#### | 0x####### | 0x####### | 0x## | Parameter: - Segment = number of segment of the RAM segment to read from - Start Image = index of image in the segment to begin readout with - Last Image = index of image in the segment which is to be read at last where: index is running from 1 to the number of valid images in segment ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x05D5 | 0x0009 | 0x####### | 0x## | # 5.6.4 Request Image Start an image transfer, while recording state is set to [on]. If **storage mode** is set to [recorder], the last aquired image is read. If **storage mode** is set to [FIFO buffer mode] the images are read in the order, in which they have been written into the fifo buffer ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0615 | 0x0005 | 0x20 | Parameter: None ### b.) Response Message: | Code | Length | Cks. | |--------|--------|------| | 0x0695 | 0x0005 | 0xA0 | ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x06D5 | 0x0009 | 0x####### | 0x## | # 5.6.5 Repeat Image Repeats image transfer, with the settings of the last RequestImage ReadImagesFromSegment call. This is useful, if an error occures during the transmission of the image. The current image transfer must be cancelled before this command can be called. ## a.) Command Message: | Code | Length | Reserved | Reserved | Reserved | Reserved | Cks. | |--------|--------|----------|----------|----------|----------|------| | 0x0815 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Parameter: • set all reserved to 0 ### b.) Response Message: | Code | Length | Reserved | Reserved | Reserved | Reserved | Cks. | |--------|--------|----------|----------|----------|----------|------| | 0x0895 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x08D5 | 0x0009 | 0x####### | 0x## | # 5.6.6 Cancel Image Transfer Cancel the current image transfer. If an error occures during the image transfer, the current transfer must be cancelled before the repeat image command could be called. # a.) Command Message: | Code | Length | Reserved | Cks. | |--------|--------|----------|------| | 0x0715 | 0x0007 | 0x#### | 0x## | Parameter: • set the reserved parameter to 0 ### b.) Response Message: | Code | Length | Reserved | Cks. | |--------|--------|----------|------| | 0x0795 | 0x0007 | 0x#### | 0x## | Return values: # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x07D5 | 0x0009 | 0x####### | 0x## | #### 5.6.7 **Get Bit Alignment** Get output data bit alignment mode. The most interfaces, e.g. FireWire deliver data words which are 16 bits wide. On the other hand the bit resolution of the pixel data delivered by the pco.camera differs from 16 bit, it's 10 bit for the pco.1200hs or 14 bit for the pco.1600 etc. The bit alignment mode defines how the pixel data are aligned to the 16 bit data. The figure below shows, how a 10 bit pixel value 1016 = 03F9H is aligned to a 16 bit word depending on the alignment mode: | Mode: | M | SE | } - | - | | | | | | | | | - | - | LS | SB | Value: | |---------------|---|----|-----|---|---|---|---|---|---|---|---|---|---|---|----|----|--------| | MSB alignment | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | FE40H | | LSB alignment | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 03F9H | ### a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0915 | 0x0005 | 0x29 | Parameter: none ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0995 | 0x0007 | 0x#### | 0x## | Return values: - bit alignment mode, where: - 1 = MSB alignment (default) - -0 = LSB alignment # 5.6.8 Set Bit Alignment Set output data bit alignment mode (see also 5.6.7 Get Bit Alignment). # a.) Command Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0A15 | 0x0007 | 0x#### | 0x## | Parameter: - bit alignment mode, where: - 1 = MSB alignment (default) - 0 = LSB alignment ### b.) Response Message: | Code | Length | Mode | Cks. | |--------|--------|--------|------| | 0x0995 | 0x0007 | 0x#### | 0x## | Return values: - the configured bit alignment mode, where: - 1 = MSB alignment (default) - -0 = LSB alignment ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D5 | 0x0009 | 0x####### | 0x## | ## 5.6.9 Play Images from Segment Play the images recorded to the camera RAM. The command is especially for HD/SDI and DVI interfaces (output only interfaces). These interfaces do not request images, but they have to be supplied with a continous data stream. The command is intended for a wide range of functions related to playing previously recorded images from a segment. **Note:** Command is only valid, if **storage mode** is set to
[recorder] and recording to the camera RAM segment is stopped! ### a.) Command Message: | Code | Length | Segm. | Dest IF | Mode | Speed | Range Low | Range High | Start No. | Cks. | |--------|--------|--------|---------|--------|--------|-----------|------------|-----------|------| | 0x0B15 | 0x0019 | 0x#### | 0x#### | 0x#### | 0x#### | 0x####### | 0x####### | 0x####### | 0x## | #### Parameter: - Segment = number of segment to read from - Dest IF = destination interface, RFU. Use 0x0001 for HD/SDI. - Mode, where: - 0x0000 = Stop, switch datastream off - 0x0001 = Play (fast) forward - 0x0002 = Play (fast) backward (rewind) - 0x0003 = Play slow forward - 0x0004 = Play slow backward (rewind) - Mode & 0x0100 = 0: At the end just repeat the last image (freeze image) - Mode & 0x0100 = 1: At the end replay sequence from beginning - other values reserved for future modes - Speed = step to increment/decrement, WORD (16 bit). Depends also on Mode Parameter. See below for a detailed description with examples. - Range Low = Lowest image number of range to be played - Range High = Highest image number of range to be played - Start No. = Start with this image number or leave unchanged (-1) The play speed is defined by the Speed parameter together with the Mode parameter: - Fast forward: The play position is **increased** by [Speed], i.e. [Speed -1] images are leaped. - Fast rewind: The play position is **decreased** by [Speed], i.e. [Speed -1] images are leaped. - Slow forward: The current image is sent [Speed] times before the position is increased - Slow rewind: The current image is sent [Speed] times before the position is decreased The play command can also be sent to change parameters (e.g. speed) while a play is active. The new parameters will be changed immediately. It is possible to change parameters like play speed or play direction without changing the current position by setting Start No. to -1 or 0xFFFFFFFH in the DWORD format. ### **Some Examples:** Assuming that a record to a segment has been finished and there are N images in the segment, (use the "Get Number of Images in Segment" command to request the number). | Desired Function | Range Low | Range High | Start No. 1) | Speed | Mode | |---|-----------|------------|-----------------|-------|--------| | Play / Start complete sequence | 1 | N | 1 | 1 | 0x0001 | | Fast Forward (speed x 10) | 1 | N | 1 | 10 | 0x0001 | | Fast Rewind (speed x 10) | 1 | N | N | 10 | 0x0002 | | Slow Forward (1/5 th in speed) | 1 | N | N | 5 | 0x0003 | | Slow Rewind (1/5 th in speed) | 1 | N | N | 5 | 0x0004 | | Cut out | j≥1 | $k \le N$ | 1 | 1 | 0x0001 | | Change Play Speed (to x 20) | 1 | N | -1 | 20 | 0x0001 | | Change Play Direction (to rewind) | 1 | N | -1 | 20 | 0x0003 | | Change current Play Position | 1 | N | $1 \le p \le N$ | 20 | 0x0001 | | Display image k as freezed image | 1 | N | k | 0 | 0x0001 | | Switch HD/SDI off | 0 | 0 | 0 | 0 | 0x0000 | ^{1) -1} means 0xFFFFFFFH for the Start No. parameter ### **Notes:** When changing the range and the current image position or the Start No. parameter is out of range, the position will be set to Range Low, if the play direction is forward, or to Range High, if the direction is rewind. ### Effects related to record frame rate and play frame rate: Please note, that the speed parameter does not depend on the recorded frame rate at all. Speed parameter 1 always means that the recorded images are sent one after another without leaps, as fast as it is possible for the selected interface and the selected format! Thus if the record frame rate is 1000 frames/s and the output frame rate defined by the interface and the output format is 50 frames/s, it will result in a play speed which is 20 times slower than the record frame rate. Although the speed parameter is 1, it will appear as a slow motion when played. On the other hand you will have to set the speed parameter to 20, if you want to see the sequence as fast as it really happened. You will have to care yourself about that effects! # b.) Response Message: | Code | Length | Segm. | Dest IF | Mode | Speed | Range Low | Range High | Start No. | Cks. | |--------|--------|--------|---------|--------|--------|-----------|------------|-----------|------| | 0x0B95 | 0x0019 | 0x#### | 0x#### | 0x#### | 0x#### | 0x####### | 0x####### | 0x####### | 0x## | Parameter: • Same as for command message. # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x0BD5 | 0x0009 | 0x####### | 0x## | Return values: • Error code, less than 0 (see also section 6. Error / Warning Codes) File: Page 136 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL 02. Nov 2010 #### 5.6.10 **Get Play Position** When the command "Play Images from Segment" was called, the sequence is started and the response message is sent immediately, whereas it may take seconds or up to minutes, until the sequence transmission is finished. The "Get Play Position" command requests, at which position the play pointer of the currently started sequence is. Note: Due to time necessary for communication and processing the command, the actual pointer may be 1 or 2 steps images ahead at the time, when the response is sent completely. # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x0C15 | 0x0005 | 0x## | Parameter: none ### b.) Response Message: | Code | Length | Status | Play Position | Cks. | |--------|--------|--------|---------------|------| | 0x0C95 | 0x000F | 0x#### | 0x####### | 0x## | Return values: • Status: > - 0x0000: no play active or play has already stopped play is active, see also play pointer - 0x0001: • Play Pointer: Number of the image currently sent to the interface. It is between Start Image and Last Image, as set by "Play Images from Segment". Only valid, when sequence play is still active. ### c.) Failure / Warning Response Message: | | | Message | Cks. | |--------|--------|-----------|------| | 0x0CD5 | 0x0009 | 0x####### | 0x## | #### **Set Interface Output Format** 5.6.11 Set interface specific output format, e.g. for HD/SDI ### a.) Command Message: | Code | Length | Dest IF | Format | Rsrvd1 | Rsrvd2 | Cks. | |--------|--------|---------|--------|--------|--------|------| | 0x1016 | 0x000D | 0x#### | 0x#### | 0x0000 | 0x0000 | 0x## | Parameter: - Dest IF - 0x0000 = reserved - 0x0001 = HD-SDI - 0x0002 = DVI - other values reserved for future interfaces - Format, where: - 0x0000 = Output disabled - 0x0001 = HD/SDI, 1080p25, RGB - 0x0002 = HD/SDI, 1080p25, arbitrary RAW mode, 2 raw images/frame - etc. - Rsrvd 1: Reserved for future use, set to 0x0000 - Rsrvd 2: Reserved for future use, set to 0x0000 ### b.) Response Message: | Code | Length | Dest IF | Format | Rsrvd1 | Rsrvd2 | Cks. | |--------|--------|---------|--------|--------|--------|------| | 0x1096 | 0x000D | 0x#### | 0x#### | 0x0000 | 0x0000 | 0x## | Return values: • See command #### **Error / Warning Codes** 6 The error codes are standardized as far as possible. The error codes contain the information of the error source (micocontrollers, CPLDs, FPGAs) and an error code (error cause). Both values are compared by a logical OR operation. Error codes and warnings are always negative values, if read as signed integers, or if read as unsigned word, the MSB is set. Errors have the general format 0x80#####, warnings have the format 0xC0#####. ### **Error / Warning source:** ``` 0x00010000..... error at microcontroller 1 0x00020000..... error at microcontroller 2 0x00030000..... error at microcontroller 3 0x00040000..... error at microcontroller 4 0x00050000..... error at FPGA 1 0x00060000..... error at FPGA 2 0x00070000.... error at I^2C 0x000A0000..... error at DLL ``` ### **Error codes:** ``` 0x80000001..... timeout in telegram 0x80000002..... wrong checksum 0x80000003..... no acknowledge 0x80000004..... wrong size in array 0x80000005..... data is inconsistent 0x80000016..... data is out of range 0x80000017..... command is not possible ``` ### **Warnings:** ``` 0xC0000080..... function already ON 0xC0000081..... function already OFF ``` In case of successful operation the standard Response Message is returned. # C. Appendices: Interface dependent Details # Command Implementation per IEEE 1394 Interface ### 7.1 General The following description requires some basic knowledge about IEEE 1394 communication. The referred standard is IEEE 1394a-2000. The camera has implemented the basic functions defined by the IEEE 1394 standard, such that a bus manager can detect what type of device, manufacturer ID, device capabilities etc. The camera cannot act as a bus manager or isochronous resource manager, therefore the master controlling the camera should be able to be bus manager as well as isochronous resource manager. Thus the master is able to reserve isochronous resources for more than one camera connected. (Isochronous resources are used to transfer image data.) ### 7.2 Communication between Camera and Master Basically there are the following types of data to be exchanged between the camera and its master controller (a PC in most cases): - Commands sent by the master controller. - Command responses sent by the camera. - Image data sent by the camera. Commands and command responses are sent as asynchronous write transactions to a defined address within the devices IEEE 1394 address range. Please note that read transactions (except for the IEEE 1394 requirements, reading device descriptors etc.) are **not** supported. This is mainly because the camera may not be able to answer a read access, which requires any kind of action (for example request the current status of the camera), within the time limits defined by IEEE 1394. Therefore the command is sent as a write access to the camera, which is acknowledged immediately at interface level. The response of the camera is also sent as a write request to the master controller. In order to avoid
writing to any device there are two rules: - The camera responds only when a valid command was sent to the camera. - The master controller has to log on with an init command (see "7.3.1 Set IEEE 1394 Interface Params"). Image data are transferred as isochronous packets. The master should be either isochronous resource manager or request resources from another device being the isochronous resource manager. The master tells the camera the isochronous channel and the packet length. ## 7.2.1 Commands sent by the master controller As can be seen from the chapters above the master which controls the camera send telegrams to the camera. The telegrams are sent as asynchronous writes to a specific address within the IEEE 1394 address range of the camera. The camera interprets all data written to the IEEE 1394 device address FFFFFA000000H as commands. Then it looks at the second word, which is the message length descriptor (see also "4.1 General message format") calculates the checksum over the telegram and compares it to the checksum byte of the telegram. Then it decodes the command by reading the first word being the command ID. If the checksum is correct and the command is known, the camera will execute the command and send a response telegram. Note: As asynchronous packets are transferred as quadlets the telegram length is padded to a quadlet multiple, if necessary. The padded bytes are not included to checksum calculation. However please set padded bytes to zero. # 7.2.2 Command responses sent by the camera The camera does an asynchronous write containing a command specific response telegram to the IEEE 1394 device address FFFFF8000000H of the master. The master is the device which logged on to the camera using the "Set IEEE1394 Interface Params Command" described below. # 7.2.3 Image data sent by the camera Image data are transferred as isochronous packets. As isochronous packet do neither contain a source identifier nor a destination identifier, the packets are identified by their channel no. The IEEE 1394 specifies a process to get a channel no. from the isochronous resource manager, thus a channel no. is used only by one device within the bus topology at a given time. The master should be either isochronous resource manager or request resources from another device being the isochronous resource manager. Then the master tells the camera the isochronous channel and the packet length. As the images will in most cases be longer than a isochronous packet the image is transferred packet by packet. Image synchronization is done using the sy field. The following lines describe how the isochronous packets are used to transfer images: Box 7.2.3: Isochronous data format due to IEEE 1394 The box above shows the isochronous data format due to IEEE 1394. The data are filled as described: - Data length is the length of the payload data of the packet in bytes. - The tag is always set to zero. - The channel no is used to detect, if the data are image data from the camera. - The tcode field is AH indicating as isochronous stream packet. - The sy field is set to 1 if the packet is the first packet of an image (image start), 0 for all following packets. # 7.2.4 Synchronisation commands sent by the camera In Firmware Revisions above 2.x an image transfer handshake is implemented, to avoid image read timeouts. If an image is transferred completely the camera now sends an asynchronous message called "Image Transfer Done" message (ID 0x0717) to the master (usually PC) at address 0xFFFFA000000. The master may then request a further image with the "Request image" command or send a "Repeat Image" command to request the last image again. Image transfer may be cancelled with "Cancel Image" command ### **Notes:** Do not care about on PC, image handshake is done by driver. Just use the current version of the pco.camera driver. This will avoid image read timeouts. You do not need to care about for existing control applications, the new implementation works the same way as the old one, just ignore the message sent to the PC/master. # 7.3 IEEE1394 specific commands ### 7.3.1 Set IEEE 1394 Interface Params Set the parameters required for the IEEE1394 communication. ### a.) Command Message: | Code | Length | | | Isochronous
Packet Length | | Cks. | |--------|--------|--------|--------|------------------------------|--------|------| | 0x0216 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | #### Parameter: - Master Node ID: The node ID of the controller. The camera sends responses always to this node ID. - Isochronous channel no. used for transmitting image data. - Packet length of a single packet. - No of packets for one image. If the number of packets is less than required for transmitting a whole image, the transmission is finished after the number of packets is transferred (the rest of the image is cut off). # b.) Response Message: | Code | Length | | Isochronous
Channel No. | Isochronous
Packet Length | Isochronous
Packet Count | Cks. | |--------|--------|--------|----------------------------|------------------------------|-----------------------------|------| | 0x0296 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | Return values: • same as for the command message # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x02D6 | 0x0009 | 0x####### | 0x## | ### 7.3.2 Get IEEE 1394 Interface Params Get the parameters required for the IEEE1394 communication. ### a.) Command Message: | Code | Length | | | |--------|--------|------|--| | 0x0116 | 0x0005 | 0x1C | | Parameter: none ### b.) Response Message: | Code | Length | | Isochronous
Channel No. | Isochronous
Packet Length | | Cks. | |--------|--------|--------|----------------------------|------------------------------|--------|------| | 0x0196 | 0x000D | 0x#### | 0x#### | 0x#### | 0x#### | 0x## | - Return Values: Master Node ID: The node ID of the controller. The camera sends responses always to this node ID. - Isochronous channel no. used for transmitting image data. - Packet length of a single packet. - No of packets for one image. If the number of packets is less than required for transmitting a whole image, the transmission is finished after the number of packets is transferred (the rest of the image is cut off). # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x01D6 | 0x0009 | 0x####### | 0x## | # 8 Command Implementation per CameraLink Interface # 8.1 General The following description requires some basic knowledge about the CameraLink interface. The referred standard is CameraLink Specification 1.0. The camera uses the base configuration for data transfer. Data transfer must be started either by command or is continuous, if the camera is set to this mode. The clock frequency of the CameraLink channel and baudrate of the serial interface can be set with commands. The commands and responses are received resp. sent through the serial lines of the CameraLink interface. # 8.2 Communication between Camera and Master Basically there are the following types of data to be exchanged between the camera and the CameraLink controller board: - Commands sent by the controller board. - Command responses sent by the camera. - Image data sent by the camera. - Control lines set by the controller board Commands and command responses are sent through the serial lines of the CameraLink interface and should be done in one not interruptable sequence: - Write command to the camera - Read command response from the camera - Check error conditions Image data is sent as requested, according to the CameraLink specification. # 8.2.1 Commands sent by the controller As can be seen from the chapters above the master which controls the camera send telegrams to the camera. The telegrams are sent as a write to the serial interface of the CameraLink channel. The camera interprets all received data from the serial line (SerTC) as commands. Then it looks at the second word, which is the message length descriptor (see also "4.1 General message format") calculates the checksum over the telegram and compares it to the checksum byte of the telegram. Then it decodes the command by reading the first word being the command ID. If the checksum is correct and the command is known, the camera will execute the command and send a response telegram. File: Version: as of: Author: Page 145 of 151 ## 8.2.2 Command responses sent by the camera The camera does a write to the serial interface of the CameraLink channel containing a command specific response telegram. The controller receives the telegram at the serial line (SerTFG). The controller should read at first two WORD's from the serial interface, extract the size information of the telegram and then read the additional data of the telegram. Then error conditions should be checked. Timeout conditions should also be checked. For most of the commands a timeout of 200ms is sufficient. For the commands "Arm Camera" and "Get COC Runtime" the timeout should be set to 1000ms. # 8.2.3 Image data sent by the camera FVAL, LVAL, DVAL signals are sent as specified in the CameraLink manual. Only the pure image data is sent. There are no additional black lines or pixel. Therefore DVAL is the same as LVAL. Two sets of interval times can be programmed "Set CL Configuration" command. Default mode is ShortGapMode other setting is LongGap (values in brackets). - the interval between two following lines (LVAL LVAL) is 4 Clks (16 Clks) - the interval between framestart and the first line (FVAL LVAL) is 8 Clks (16 Clks) - the shortest interval between two frames (FVAL FVAL) is 16 Clks (2560 Clks) Image data can be transmitted as 1x16bit values or 2x12bit values. This can be programmed using the "Set CL Configuration" command. The 2x12Bit is valid only for pco.1200hs cameras, which have this feature enabled in the camera descriptor. # 8.2.4 Control
lines set by the controller The four CameraLink control lines CC1, CC2, CC3, CC4 are assigned to specific functions of the camera. The functionality of the lines can be enabled or disabled "Set CL Configuration" command - CC1: is used for trigger **instead** of the <exp trig> input at the pco.power unit - CC2: is used for acquire **instead** of the <acq enbl> input at the pco.power unit - CC3: not used - CC4: is used to control the transfer of images **instead** of the internal signals set by the camera firmware. CC4 is used as a gate which is sampled every time, when the camera is able to start an image transfer. If CC4 is '1' the transfer is started, otherwise the camera waits until CC4 changes to '1'. CC4 does not cancel started image transfers. # 8.3 CameraLink specific commands # 8.3.1 Set CL Configuration Set the parameters required for the CameraLink Configuration. ### a.) Command Message: | Code | Length | Pixelclock | CClines | | Transmit continuous | Cks. | |--------|--------|------------|---------|------|---------------------|------| | 0x3516 | 0x000C | 0x####### | 0x## | 0x## | 0x## | 0x## | Parameter: • Pixelclock: Clockfrequency of the CameraLink Datatransfer in Hz. Possible values are 32 000 000 , 53 333 333 , 64 000 000, 80 000 000 for pco.4000 or 20 000 000, 40 000 000, 66 666 667, 80 000 000 for all other pco.cameras • CClines: Bit0 set: enable CC1 line to be used as trigger instead of <exp trig> Bit1 set: enable CC2 line to be used as aquire enable instead of <acq enbl> Bit3 set: enable CC4 line to gate image tranfer • Dataformat: CL_FORMAT_1x16 = 0x01: one pixel per clock CL_FORMAT_2x12 = 0x02: two pixels per clock (only for pco. 1200hs cameras, which have this feature enabled in the camera descriptor) CL_FORMAT_3x8 = 0x03: three pixels per clock (8 bit per pixel) (special OEM version of the pco.1200hs) • Transmit: Bit0 set: enables continuous transmit of image data from the camera to the CameraLink interface when the camera is started (recording state: [run]). Every time a new image is grabbed from the camera, it is sent to the CameraLink interface. Bit1 set: enable LongGap mode. Use longer intervals between CameraLink signals FVAL and LVAL ### b.) Response Message: | Code | Length | Pixelclock | Cclines | Dataformat | Transmit continuous | Cks. | |--------|--------|------------|---------|------------|---------------------|------| | 0x3596 | 0x000C | 0x####### | 0x## | 0x## | 0x## | 0x## | Return values: • same as for the command message ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x35D6 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) # 8.3.2 Get CL Configuration Get the parameters required for the CameraLink Configuration. ## a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x3416 | 0x0005 | 0x4F | Parameter: None ### b.) Response Message: | Code | Length | Pixelclock | Cclines | | Transmit continuous | Cks. | |--------|--------|------------|---------|------|---------------------|------| | 0x3496 | 0x000C | 0x####### | 0x## | 0x## | 0x## | 0x## | Parameter: • Pixelclock: Clockfrequency of the CameraLink Datatransfer in Hz. • CClines: Bit0 set: CC1 line enabled, to be used as trigger instead of <exp trig> Bit1 set: CC2 line enabled, to be used as aquire enable instead of <acq enbl> Bit3 set: CC4 line enabled, to gate image transfer • Dataformat: $CL_FORMAT_1x16 = 0x01$: one pixel per clock $CL_FORMAT_2x12 = 0x02$: two pixels per clock CL_FORMAT_3x8 = 0x03: three pixels per clock (8 bit per pixel) Transmit continuous: continuous transmit is enabled. Bit0 set: > image date from the camera to the CameraLink interface is transmitted continuously, when the camera is started (recording state: [run]). Every time a new image is grabbed from the camera, it is sent to the CameraLink interface. LongGap mode enabled. Longer intervals between Bit1 set: CameraLink signals FVAL and LVAL are used # c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|------------|------| | 0x34D6 | 0x0009 | 0x######## | 0x## | ### 8.3.3 Set CL Baudrate Set the baudrate of the serial interface of the camera. ### a.) Command Message: | Code | Length | Baudrate | Cks. | |--------|--------|-----------|------| | 0x3316 | 0x0009 | 0x####### | 0x## | Parameter: • Baudrate: Possible values are 9 600, 19 200, 38 400, 57 600,115 200 Default setting is 9 600 ### b.) Response Message: | Code | Length | Baudrate | Cks. | |--------|--------|-----------|------| | 0x3396 | 0x000C | 0x####### | 0x## | Parameter: • Baudrate to be set: ### c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x33D6 | 0x0009 | 0x####### | 0x## | Return values: • error code, less than 0 (see also section 6. Error / Warning Codes) ### **Important note:** Because the configuration of new baudrates must be done on the controller and the Camera, the setting **must** be done in the following manner: - 1. Send the "Set CL Baudrate", parameter = new baudrate, using the old baudrate - 2. Get the response of camera also with the old baudrate - 3. Wait 100 200 ms - 4. Then set the new baudrate on the controller (using the controller specific commands) - 5. Send the command "Get CL Baudrate" (now using the new baudrate) - 6. Get the response of camera (using the new baudrate) - 7. If no response or error response, switch back to standard baudrate 9600 and try again File: Page 150 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL # 8.3.4 Get CL Baudrate Get the baudrate of the serial interface of the camera # a.) Command Message: | Code | Length | Cks. | |--------|--------|------| | 0x3216 | 0x0005 | 0x4D | Parameter: • None # b.) Response Message: | Code | Length | Baudrate | Cks. | |--------|--------|-----------|------| | 0x3296 | 0x0009 | 0x####### | 0x## | • Currently configured baudrate of the camera Parameter: ## c.) Failure / Warning Response Message: | Code | Length | Message | Cks. | |--------|--------|-----------|------| | 0x32D6 | 0x0009 | 0x####### | 0x## | ### **PCO AG** Donaupark 11 D-93309 Kelheim fon +49 (0)9441 2005 0 fax +49 (0)9441 2005 20 eMail: info@pco.de www.pco.de # **The Cooke Corporation** 1091 Centre Road Suite 100 Auburn Hills, MI 48326 www.cookecorp.com File: Page 152 of 151 Version: as of: Author: FRE/ LWA/ EO/ GHO/MBL 02. Nov 2010